Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Карманный фонарь на светодиодах. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Освещение

Комментарии к статье Комментарии к статье

Сверхяркие светодиоды белого свечения - экономичные маломощные излучатели света, способные с успехом заменить в карманных фонарях лампы накаливания. В последнее время в продаже появились светодиодные фонари промышленного изготовления. Эта статья поможет радиолюбителям самостоятельно изготовить такой же и, заодно, разобраться в некоторых тонкостях питания светодиодов.

Особенность светодиода как нагрузки для источника питания состоит втом, что он, в отличие от лампы накаливания, имеет нелинейную вольт-амперную характеристику с резко выраженной "'пяткой" на начальном участке. Прямое падение напряжения на светодиоде белого свечения при рабочих значениях тока превышает 3 В. Питать его от батареи напряжением 4,5 В из трех гальванических элементов нерационально - треть энергии будет израсходована впустую, рассеиваясь на гасящем резисторе. Напряжения двух, а тем более от одного гальванического элемента недостаточно, требуется преобразователь, повышающий напряжение до нужного значения и поддерживающий его неизменным при разрядке батареи.

Такой преобразователь можно собрать по схеме, показанной на рис. 1. Его основа - микросхема МАХ756 фирмы "Maxim", разработанная специально для портативных электронных приборов с автономным питанием. Преобразователь сохраняет работоспособность при снижении питающего напряжения до 0,7 В. Стабилизированное выходное напряжение может быть установлено равным 3.3 или 5 В при выходном токе соответственно до 300 или 200 мА. КПД при максимальной нагрузке - более 87 %.

Карманный фонарь на светодиодах

Микросхема DA1 включена по типовой схеме. Дроссель L1, диод VD1 и конденсатор C3 вместе со встроенным в микросхему полевым транзистором (его сток соединен с выводом 8, исток - с выводом 7) образуют ключевой инвертор повышающего типа. Конденсатор С2 блокирует по переменному току внутренний источник образцового напряжения, а С1 - батарею GB1. Напряжение обратной связи с выхода инвертора поступает на вывод 6 микросхемы. Показанное на схеме подключение вывода 2 соответствует выходному напряжению 3,3 В. Если соединить этот вывод с общим проводом (выводом 7), напряжение возрастет до 5 В. Соединение с общим проводом вывода 1 остановит инвертор. Вывод 5 - вход не используемой в данном случае системы контроля питающего напряжения. Он не должен оставаться свободным и по этой причине соединен с плюсом батареи GB1.

Цикл работы инвертора можно разделить на две фазы. В первой - внутренний транзистор открыт, через дроссель L1 течет линейно нарастающий ток. Магнитное поле дросселя накапливает энергию. Диод VD1 закрыт. Конденсатор C3 разряжается, отдавая ток в нагрузку. Номинальная длительность фазы - 5 мкс, но она может быть автоматически прервана раньше, если ток стока транзистора достигнет максимально допустимого значения (приблизительно 1 А).

Во второй фазе цикла транзистор закрыт. Ток дросселя L1, текущий теперь, спадая, через диод VD1, заряжает конденсатор C3, компенсируя его разрядку в первой фазе. С достижением напряжением на конденсаторе заданного порога фаза прекращается. В зависимости от напряжения питания и тока нагрузки частота повторения описанного цикла изменяется в очень широких пределах.

С уменьшением входного напряжения и увеличением тока нагрузки микросхема МАХ756 переходит в режим с фиксированной длительностью фаз (соответственно 5 и 1 мкс). Выходное напряжение не стабилизировано, оно снижается, оставаясь максимально возможным в таких условиях

В качестве светоизлучателей в фонарь установлены четыре светодиода L-53PWC "Kingbright", включенных параллельно. Разъем Х1 - имеющийся в фонаре ламповый патрон. Поскольку при токе 15...30 мА прямое падение напряжения на светодиоде приблизительно 3,1 В, лишние 0,2 В пришлось погасить на резисторе R1, включенном последовательно. С разогревом светодиодов падение напряжения на них уменьшается и последовательный резистор в какой-то мере стабилизирует ток и яркость свечения. Выравнивать значения тока через отдельные светодиоды не пришлось. Различия их яркости "на глаз" не обнаружено.

За основу конструкции был взят карманный фонарь "VARTA" с поворотным светоизлучающим узлом. В принципе подойдет любой другой фонарь, в котором найдется свободное место для размещения необходимых деталей. Благодаря использованию малогабаритных компонентов все удалось разместить внутри светоизлучающего узла (рис. 2). Монтаж производился навесным способом с использованием выводов микросхемы в качестве опорных точек.

Карманный фонарь на светодиодах

Четыре светодиода, как показано на рис. 3, заняли место удаленной стеклянной колбы "штатной" лампы фонаря. Выводы их анодов припаяны к металлической оболочке цоколя, выводы катодов пропущены в его центральное отверстие и пропаяны.

Оксидные конденсаторы С1 и C3 - импортные танталовые для поверхностного монтажа. Их низкое последовательное сопротивление благоприятно влияет на КПД. Конденсатор С2 - К10-176 или любой другой керамический. Диод 1N5817 с барьером Шотки можно заменить на SM5817 или, пренебрегая немного большим прямым падением напряжения, на 1N5818 (SM5818). Обмотка дросселя L1 - 35 витков провода ПЭВ-2 0,28, намотанных на магнитопроводе от дросселя сетевого фильтра маломощного импульсного источника питания. Это кольцо типоразмера К10x4x5 из молибденового пермаллоя магнитной проницаемостью 60. Можно использовать дроссели индуктивностью 40... 100 мкГн и допустимым током не менее 1 А серии ДМ со стержневым магнитопроводом. Желательно, чтобы активное сопротивление обмотки дросселя не превышало 0,1 Ом, иначе КПД устройства заметно снизится.

Возможности изготовленного преобразователя напряжения были проверены с использованием регулируемого источника напряжения 0...3 В вместо батареи GB1. Снятая зависимость выходного напряжения от входного показана на рис. 4. Преобразователь продолжал работать даже при снижении напряжения питания до 0,4 В, отдавая в этом режиме напряжение 2,6 В при токе 7 мА (вместо исходных 110 мА). Свечение светодиодов все еще оставалось заметным. После выключения и повторного включения преобразователь запускался лишь при напряжении питания более 0,7 В. Измеренный КПД при свежих элементах питания составил 87 %.

Карманный фонарь на светодиодах

Фирма Maxim сегодня выпускает усовершенствованный вариант микросхемы МАХ756 - МАХ1674. В ней имеется встроенный синхронный выпрямитель, делающий ненужным внешний диод и дающий возможность довести КПД преобразователя до 94 %. Следует иметь в виду, что достичь столь высокого КПД удается только при правильном выборе типа и номиналов внешних элементов и продуманном монтаже преобразователя.

Автор: Б.Ращенко, г.Новосибирск

Смотрите другие статьи раздела Освещение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Прочный полимер с эффектом памяти 16.02.2016

Ученые из Рочестерского университета в США под руководством Митча Энтаматтена (Mitch Anthamatten) разработали материал, который, меняя форму при нагревании и возвращаясь при остывании в исходное положение, способен поднимать грузы, в тысячу раз превышающие собственный вес. При этом достаточно нагреть полимер с комнатной температуры до 35 градусов по Цельсию, то есть температуры человека.

При нагревании полимерные цепочки растягиваются и образуют высокоупорядоченные структуры. Их число постепенно растет, а материал приобретает новую форму. При этом химики научились настраивать полимер на нужную температуру работы за счет различных добавок. Ученые поработали над химическим составом материала, чтобы он стал максимально упругим, а значит, мог накапливать много потенциальной энергии и поднимать грузы, намного превышающие собственную массу. Исследователи приводят пример: резинка размером со шнурок для обуви, весом в 1 грамм, может таким образом поднять литровую бутылку содовой.

"Наш полимер - это как резиновый пояс, который при растяжении фиксируется в определенной форме. Но достаточно к ней прикоснуться, как она вернется к исходной форме", - пояснил руководитель исследования.

Ученые предполагают, что такой уникальный полимер будет полезен во множестве сфер. Например, в качестве нитей для особо прочных швов, для изготовления искусственной кожи, медицинских дозаторов, реагирующих на температуру тела и так далее.

Другие интересные новости:

▪ Глобальная система позиционирования и навигации GNSS

▪ Трипольцы почти не ели мяса

▪ Долгая работа за компьютером вредит здоровью

▪ Неуязвимая электроника

▪ Пряжа из молока

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Справочник электрика. Подборка статей

▪ статья Свобода или смерть! Крылатое выражение

▪ статья Когда изобрели лампы? Подробный ответ

▪ статья Коричник Лоурейра. Легенды, выращивание, способы применения

▪ статья Анилиновые чернила. Простые рецепты и советы

▪ статья Индуктивности. Кодовая маркировка. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024