Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Сваркой управляет электроника. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Сварочное оборудование

Комментарии к статье Комментарии к статье

Многие конструкции из металла собираются с применением электрической сварки. Я изготовил для этого несколько аппаратов, и один оказался наиболее удачным и удобным в эксплуатации. Предлагаю вашему вниманию сварочный трансформатор с электронным регулированием тока. Он не имеет подвижных частей, требующих высокого качества сборки и подверженных вибрации. Блок управления позволяет плавно регулировать сварочный ток поворотом ручки потенциометра. При этом во всем диапазоне изменения дуга горит стабильно.

Техническая характеристика сварочного трансформатора с электронным регулированием тока:

  • Напряжение питания, В 220
  • Пределы регулирования сварочного тока, А 45 - 140
  • Напряжение холостого хода силовой дуги, В 42
  • Напряжение холостого хода дежурной дуги, В 87
  • Ток подпитки, А 15

На рисунке 1 представлена электрическая схема сварочного аппарата. В нее включены: сварочный трансформатор Т3; силовой выпрямитель на тиристорах VS3, VS4; выпрямитель для питания дежурной дуги на диодах VD6 - VD9, сглаживающий дроссель L1; блок управления силовыми тиристорами на транзисторах VТ1 - VТ5.

Сваркой управляет электроника
Рис. 1. Принципиальная электрическая схема сварочного аппарата с электронным регулированием тока и питанием от сети напряжением 220 В

Основная дуга питается от выпрямителя на тиристорах VS3, VS4; значение сварочного тока меняется путем изменения угла включения тиристоров.

Когда силовые тиристоры закрыты, ток сварочной дуги обеспечивается цепью подпитки на диодах VD6 - VD9 и дросселем L1.

Силовой выпрямитель имеет падающую внешнюю характеристику. Выпрямитель дежурной дуги имеет крутопадающую внешнюю характеристику, и за счет дросселя L1 в цепи дуги поддерживается непрерывный ток, что обеспечивает устойчивое горение дуги и предотвращает осыпание обмазки электродов.

Схема управления состоит из источника питания на трансформаторе Т1, выпрямителя на диодах VD1, схемы синхронизации на транзисторах VT1 и VT5, фазосдвигающего устройства на транзисторах VТ3, VТ4, блока сравнения на транзисторе VТ2, схемы измерителя сварочного тока на трансформаторе тока Т4, цепи управления силовыми тиристорами на тиристорах VS1 и VS2.

Схема синхронизации на транзисторах VТ1, VТ5 предназначена для разряда емкости С3 фазосдвигающего устройства в начале каждого полупериода напряжения питания сети. В момент, когда напряжение сети равно 0, на базе транзистора VТ1 будет 0 (он закрыт), a VТ5 открыт и С3 разряжен; во всех остальных случаях VТ5 закрыт.

В начале каждого полупериода питающего напряжения конденсатор С3 заряжается через VТ2 и R8; в момент, когда напряжение на С3 будет равно напряжению на базе транзистора VТЗ, происходит его открывание, VТ4 и С3 разряжается на I обмотку импульсного трансформатора Т2. С обмотки II и III импульс тока открывает тиристор VS1 или VS2 (открывается тиристор, на аноде которого присутствует положительная полуволна напряжения). Ток управления с обмотки III или IV трансформатора Т1 через открытый тиристор VS1 или VS2 подается на силовой тиристор VS3 или VS4. Из этих тиристоров открывается тот, через управляющий электрод которого протекает управляющий ток. Последний ограничивается резисторами R14 или R15.

Через открытый тиристор VS3 (VS4) протекает ток сварочной дуги, он измеряется трансформатором тока Т4 и через цепь обратной связи VD5, R17, С4, R18, R20, R7 подается на схему сравнения на транзисторе VT2. Напряжение с движка резистора R20 сравнивается с напряжением в точке "А" схемы сравнения. Транзистор VT2 меняет свое внутреннее сопротивление (он работает в активном режиме) в зависимости от разности напряжений в точке "А" и на движке резистора R20. Если ток через сварочную дугу вырос больше, чем задано блоком управления, внутреннее сопротивление VT2 возрастает, конденсатор С1 заряжается медленнее, угол включения силовых тиристоров увеличивается и, следовательно, ток через сварочную дугу уменьшается.

В случае уменьшения сварочного тока ниже, чем задано блоком управления, происходят обратные процессы: угол включения силовых тиристоров уменьшается и, следовательно, ток дуги увеличивается. Таким образом происходит регулирование сварочного тока.

Ток сварочной дуги задается с панели управления путем поворота движка резистора R20. В процессе горения дуги зазор между концом электрода и сварочным изделием меняется, следовательно, меняется и напряжение на дуге. В некоторых случаях (при большом зазоре) оно становится больше, чем напряжение холостого хода силового выпрямителя, и тогда дуга начинает питаться от выпрямителя дежурной дуги, а силовые тиристоры закрываются. В случае уменьшения длины сварочной дуги силовые тиристоры откроются снова, так как в течение всего полупериода через управляющий электрод тиристора протекает ток управления.

Трансформатор Т1 может быть любой мощности, но не менее 20 Вт, первичная обмотка I - на 220 вольт, обмотка II - на 24 вольта, диаметр провода не менее 0,13 мм, обмотка III и IV - на напряжение 12 вольт, диаметр провода не менее 0,25 мм.

Трансформатор Т2 намотан на сердечнике К20х10х5 из феррита 2000НМ. Его обмотки I, II, III - по 50 витков провода ПЭВ-1 диаметром 0,2 мм.

Сердечник трансформатора Т3 - из электротехнической холоднокатаной стали марки 3404 толщиной 0,35 мм (размеры указаны на рис. 2). Обмотка I - 162 витка: две секции по 81 витку медного провода сечением 8 мм2 (2x4 мм). Каждая обмотка II и III - по 32 витка: состоит из двух секций по 16 витков медного провода сечением 15 мм2 (3x5 мм). Обмотки I, II, III имеют изоляцию из стекловолокна, пропитанную теплостойким лаком. Обмотка IV, V - по 93 витка эмалированного провода диаметром 1,7 мм.

Сваркой управляет электроника
Рис. 2. Сварочный трансформатор Т3 (электрическая (а) и физическая (б) схемы расположения обмоток на магнитопроводе): 1 - обмотка I (две секции по 81 витку медного провода сечением 8 мм2); 2,3 - обмотки II и III (каждая - из двух секций по 16 витков медного провода сечением 15 мм2); 4,7 - обмотки V и IV (по 93 витка эмалированного провода диаметром 1,7); 5 -сердечник (холоднокатаная сталь марки 3404, лист s0,35); 6 - магнитный шунт

В качестве трансформатора тока Т4 взят сердечник от трансформатора тока ТК 200, 100/5. Он имеет две первичные

обмотки по одному витку сечением 15 мм2. В качестве провода можно применить сварочный кабель или другой многожильный провод в изоляции. Вторичная обмотка - 400 витков эмальпровода диаметром 0,5 мм. Она намотана на каркас от старой вторичной обмотки.

Сердечник дросселя L1 - из электротехнической стали; сечение магнитопровода (проходящего через обмотку) не менее 12 см2 с немагнитным зазором 1 мм. Число витков эмальпровода диаметром 2,24 мм - 68.

Электронная схема некритична к радиоэлементам, за исключением VТЗ и VТ4 (пара этих транзисторов должна быть аналогом динистора). Резистор R20 должен иметь ручку для регулирования сварочного тока. Резистор R16 - ПЭВ 10. Резистор R15 (R14) собран из трех параллельно включенных одноваттных резисторов по 47 Ом каждый.

Отладка сварочного трансформатора осуществляется поблочно. Сначала он собирается и включается в сеть через предохранитель не менее 30 А. Затем проверяется напряжение на вторичных обмотках: на II и III - до 45 вольт, причем необходимо их включать согласно; на обмотках IV и V - до 90 вольт (включение также согласно). Последовательно с силовыми тиристорами включаются одновитковые обмотки трансформатора тока Т4 таким образом, чтобы он работал в режиме перемагничивания.

После сборки блока управления проверяют импульсы на выходе Т2 и работу схемы синхронизации. Для удобства проверки вместо транзистора VT2 параллельно R9 следует поставить переменное сопротивление 20 кОм и, изменяя его значение, проверить изменение угла включения аналога динистора. Затем собирается вся схема. В цепь сварочной дуги ставится амперметр с током полного отклонения 150 - 200 А. При сварке металла необходимо подстроить резистор R18 так, чтобы при повороте ручки переменного резистора R20 сварочный ток изменялся от 45 до 140 А.

Силовые тиристоры крепятся на стандартные радиаторы; диоды VD6 - VD9 установлены на четыре радиатора площадью 30 см2 каждый.

Сварочный трансформатор успешно и безотказно эксплуатируется с 1993 года по сей день, электронное управление током сварки очень удобно при сварочных работах, особенно в разных пространственных положениях сварочного шва.

Литература:

  1. Д.Приймак. В помощь радиокружку - Радио. 1989. №5. с. 79.
  2. М.И.Закс, Б.А.Каганский, А.А.Печенин. Трансформаторы для электродуговой сварки. Ленинград: Энергоатомиздат. 1988 г.
  3. В.М.Рыбаков. Дуговая и газовая сварка. - Москва: "Высшая школа", 1986 г.

Автор: Н.Зызлаев, г.Самара

Смотрите другие статьи раздела Сварочное оборудование.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Неэкономую бытовую технику - под запрет 02.09.2014

Евросоюз продолжает реализовывать планы в области энергосбережения. С начала 2015 г. в ЕС могут запретить производство и реализацию мобильных устройств и гаджетов, потребляющих слишком много электроэнергии при зарядке батарей.

В "черный список" могут попасть, кроме того, электрочайники, фены, газонокосилки и другие бытовые устройства, если они не будут отвечать определенным требованиям. Чиновники полагают, что мощность фенов, например, можно уменьшить на 30% без ухудшения качества их работы.

В этом случае производителям бытовой техники и электроники придется внести конструктивные изменения в свои продукты, чтобы они отвечали новым требованиям.

На данный момент на европейском рынке представлены бытовые приборы мощностью до 2300 Вт. Европейские власти предлагают заняться уменьшением энергопотребления, по сути, всей бытовой электроники.

С 1 сентября этого года на территории ЕС уже запрещена реализация пылесосов мощностью более 1600 Вт.

Другие интересные новости:

▪ Новые микросхемы аналоговых переключателей серии DG

▪ Астму лечат радиоволнами

▪ Новые диоды Шотки от VISHAY

▪ Взаимодействие электронов с фононами ведет к перегреву телефона

▪ Хор морских ежей

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электрику. ПТЭ. Подборка статей

▪ статья Карл Саган. Знаменитые афоризмы

▪ статья Почему сентябрь идет в году девятым, хотя в буквальном переводе означает седьмой? Подробный ответ

▪ статья Начальник отдела кадров. Должностная инструкция

▪ статья Простой генератор ЗЧ. Энциклопедия радиоэлектроники и электротехники

▪ статья Поведение двух капель. Физический эксперимент

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024