Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Часы-термометр. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Регуляторы мощности, термометры, термостабилизаторы

Комментарии к статье Комментарии к статье

На светодиодном индикаторе этого прибора показания текущего времени периодически сменяется на значение температуры окружающей среды в месте расположения датчика - обычного полупроводникового диода. Устройство не содержит микросхем, требующих программирования.

Принципиальная схема часов-термометра приведена на рис. 1. "Часовая" часть построена на широко известных микросхемах К176ИЕ18 (DD4) и К176ИЕ13 (DD6). О принципе их действия и особенностях применения можно прочитать, например, в [1].

Часы-термометр
(нажмите для увеличения)

Основой термометра служит микросхема КР572ПВ6 (DA4) - АЦП двойного интегрирования, - во многом подобная хорошо известным КР572ПВ2 и КР572ПВ5. Основные отличия состоят в повышенной точности преобразования напряжения в код (4,5 десятичных разряда) и выходных цепях, рассчитанных на подключение динамического цифрового индикатора.

Двоично-десятичные коды цифр результата преобразования поочередно появляются на выходах В1, В2, В4, В8. Каждую цифру сопровождает высокий логический уровень на соответствующем выходе D1 (старший десятичный разряд, в рассматриваемом приборе не использован) - D5 (младший разряд). Импульсы на выходе STB отмечают моменты смены цифр Логический уровень на выходе POL говорит о полярности результата: 1 - положительная, 0 - отрицательная. Необходимые для работы микросхемы DA4 тактовые импульсы частотой приблизительно 120 кГц поступают на ее вход CLK от генератора на элементах DD2.3 и DD2.4.

На микросхеме КР142ЕН19А (DA3) собран стабилизатор напряжения 2,5 В для измерительных цепей термометра. Конденсатор С11 предотвращает паразитную генерацию. С помощью резистора R21 задан ток (приблизительно 0,14 мА) через датчик температуры - диод VD12. Напряжение на диоде, при неизменном токе линейно зависящее от температуры, поступает на вход IN микросхемы DA4. На ее вход IN+ с движка подстроечного резистора R26 подано напряжение, равное напряжению на диоде VD12 при температуре 0 DC, - приблизительно 600 мВ.

Образцовое напряжение 200 мВ на входе Uref АЦП устанавливают подстроечным резистором R28. Именно такого значения (по абсолютной величине) достигла бы разность потенциалов входов IN+ и IN- при температуре датчика ±100 °С. Практически интервал измеряемой температуры составляет -60...+99,9 °С.

Цепь R22C15 защищает вход АЦП от помех и наводок. Конденсатор С19 предназначен для хранения образцового напряжения. Конденсатор С16 и резистор R39 - элементы интегратора. Конденсатор С18 входит в цепь автоматической коррекции нуля АЦП. Диод VD12 звшунтирован конденсатором С13 для устранения наводок частотой 50 Гц, которые способны заметно исказить показания. О работе подобного термометра можно прочитать в [2].

Микросхема К561ЛС2 (DD7) - четыре элемента И-ИЛИ с общими входами стробирования - поочередно подключает к узлу индикаторов два источника сигналов выбора разряда индикатора: выходы Т1 -Т4 микросхемы DD4 в режиме индикации времени или выходы D2- D5 микросхемы DA4 в режиме индикации температуры. Сигналы с выходов элементов DD7 управляют транзисторами VT8, VT10, VT13, VT14, поочередно включающими индикаторы HG1-HG4.

На входы DDI - преобразователя двоично-десятичного кода в семиэлементный - сигналы с выходов В1, В2, В4, В8, STB микросхемы DA4 поступают через повторители микросхемы DD8. К его же (преобразователя DD1) входам подключены и выходы микросхемы DD6 Однако управляющий сигнал, подаваемый на вход V DD6 и входы Е и Z DD8, позволяет быть активными только выходам одной из этих микросхем, переводя выходы другой в пассивное (высокоимпе-дансное) состояние Пассивное состояние выходов микросхемы DD6 никак не сказывается на процессе счета времени.

В результате при лог. 1 на выводе 5 счетчика DD5 индикаторы HG1-HG4 отображают температуру, а при лог. 0 - время. На вход CN этого счетчика поступают секундные импульсы с выхода

51 микросхемы DD4, поэтому через каждые 4 с уровень на выходе 5, а с ним и режим индикации изменяются. При размыкании контактов выключателя SA1 счетчик остановится в том состоянии, в котором он находился в момент размыкания. Замыкание контактов выключателя SA1 возобновит периодическую смену режимов.

Через усилители тока на транзисторах VT1- VT7 выходные сигналы преобразователя кода DD1 поступают на аноды индикаторов HG1-HG4. В режиме индикации температуры "лишний" старший разряд индикатора погашен поступающим на вход К преобразователя DD1 сигналом, сформированным элементом DD3.1. Сигнал с выхода элемента DD3.2 при отрицательной температуре включает на индикаторе HG1 элемент g - знак "минус".

Элемент DD3.3 и транзистор VT11 управляют светодиодами HL1 и HL2. В режиме индикации температуры оба светодиода погашены. В режиме индикации времени светодиод HL2 мигает с частотой 1 Гц всегда, a HL1 - только при замкнутом выключателе SA1. Вторая группа контактов этого выключателя, замыкая цепь излучателя НА1, разрешает подачу звукового сигнала срабатывания будильника.

Так как вход 12 микросхемы DD8 соединен с общим проводом, в активном состоянии (в режиме индикации температуры) высокий логический уровень с выхода 11 этой микросхемы через ключ на транзисторе VT12 включает на индикаторе HG3 элемент h - десятичную запятую между разрядами единиц и десятых долей градуса.

Резисторы R48-R56 необходимы для увеличения напряжения высокого логического уровня на выходах микросхемы DA4. Резисторы R3, R13-R16 - нагрузочные в цепях выходов микросхемы DD4 с открытым истоком.

Узел питания прибора состоит из трансформатора Т1 и двух двухполупериодных выпрямителей. Один из них (на диодах VD3 и VD4) дает напряжение +12 В для питания анодных цепей индикаторов HG1-HG4. Из него же с помощью интегрального стабилизатора DA1 получают напряжение +5 В для питания микросхем прибора. Из напряжения второго выпрямителя (на диодах VD5, VD6) с помощью интегрального стабилизатора DA2 получают напряжение -5 В, необходимое микросхеме АЦП DA4.

В качестве трансформатора Т1 можно применить любой сетевой с двумя вторичными обмотками на 9 12 В при токе нагрузки не менее 300 мА. Микросхемы DA1 и DA2 заменят любые интегральные стабилизаторы соответственно положительного (например, КР1157ЕН502А) и отрицательного (например, КР1168ЕН5) напряжения 5 В. Стабилизатор отрицательного напряжения в крайнем случае может быть параметрическим на стабилитроне КС156А. Потребляемый по цепи -5 В ток не превышает 3 мА.

Батарея резервного питания GB1 - три гальванических элемента типоразмера АА, соединенных последовательно. Она предназначена для поддержания хода часов в отсутствие сетевого напряжения. В этом случае напряжение питания от батареи поступает через диод VD13 только на "часовые" микросхемы DD4 и DD6. Чтобы остальные микросхемы, оставленные без питания, не влияли на упомянутые, в связывающие их цепи последовательно включены резисторы R11, R43-R46, а резистор R31 в режиме резервного питания поддерживает низкий логический уровень на входе V микросхемы DD6. Резистор R23 обеспечивает подзарядку батареи GB1 при работе от сети.

Авторский экземпляр часов-термометра собран в пластмассовом корпусе часов из радиоконструктора "Электроника". Детали установлены на нескольких платах из стеклотекстолита и соединены в основном навесными изолированными проводами. Доступ к осям подстроечных резисторов R26 и R28 - через отверстия в задней части корпуса.

Вместо указанных на схеме светодиодных индикаторов SC10-21YWA можно использовать любые другие с общим катодом, подходящие по размеру и цвету свечения. Светодиоды HL1, HL2 размещают в зазоре между индикаторами HG2 и HG3. В качестве транзисторов VT8, VT10, VT13, VT14 можно применить любые кремниевые структуры п-p-n с коэффициентом передачи тока не менее 180 и максимальным током коллектора не менее 300 мА. При подборе замены обращайте внимание и на остаточное напряжение коллектор- эмиттер в режиме насыщения, заметно влияющее на яркость свечения индикаторов. У транзисторов КТ530А оно не превышает 0,13 В.

Звуковой излучатель НА1 - малогабаритный электромагнитный от импортного будильника. Вместо него можно с успехом использовать динамическую головку со звуковой катушкой сопротивлением не менее 30 Ом.

Импортные аналоги микросхемы КР572ПВ6 - ICL7135 или TLC7135. Некоторые экземпляры подобных АЦП страдают "перекосом" характеристики - результаты преобразования положительного и равного ему по абсолютной величине отрицательного напряжения немного различаются (не считая уровня на выходе POL). Устраняют перекос с помощью диодно-резисторной цепи, подключенной, как показано на рис. 2.

Часы-термометр

О налаживании часовой части прибора подробно рассказано в [1]. А для калибровки термометра датчик температуры (диод VD12) помещают в тающий лед или снег и подстроечным резистором R26 добиваются нулевого показания на светодиодном индикаторе. Если этого сделать не удается, подбирают номинал резистора R25. Затем, опустив датчик в горячую воду с температурой, контролируемой образцовым термометром, резистором R28 устанавливают на индикаторе соответствующее значение.

Яркость свечения индикаторов HG1-HG4 и светодиодов HL1, HL2 при необходимости можно увеличить или уменьшить, подобрав номиналы резисторов R4-R10, R30, R36.

В заключение хотелось бы поделиться опытом установки датчика температуры вне помещения. Он должен находиться как можно дальше от окон и стен дома, хорошо обдуваться ветром, но быть укрытым от прямых солнечных лучей. Наилучшее место - внешняя часть ограждения балкона. Перпендикулярно к ней крепят горизонтальный деревянный брусок сечением 30x30 мм и длиной приблизительно 500 мм. На удаленном от балкона конце бруска под углом 30° устанавливают солнцезащитный козырек размерами 300x300 мм из фанеры толщиной не менее 10 мм. Под козырьком на удалении 40...60 мм от центра его нижней поверхности и размещают диод VD12, предварительно поместив его во влагозащитную капсулу подходящего объема, например, из-под лекарства. Отверстие в капсуле, через которое выведены соединительные провода, следует герметизировать.

Литература

  1. Алексеев С. Часы автолюбителя. - Радио, 1996, № 11, с. 46-48.
  2. Бирюков С. Простой цифровой термометр. - Радио, 1997, № 1, с.40-42.

Автор: В.Суров, г.Горно-Алтайск

Смотрите другие статьи раздела Регуляторы мощности, термометры, термостабилизаторы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Муравьиный шагомер 11.02.2007

Муравей-бегунок, живущий в Сахаре, уверенно совершает рейсы по однообразному песчаному ландшафту и возвращается к своему гнезду. Как многие насекомые, он ориентируется при этом по солнцу, но каким образом бегунок измеряет пройденное расстояние?

Немецкие энтомологи показали, что у муравья есть шагомер. Муравьев привлекали к кормушке в 10 метрах от гнезда, а затем следили за их возвращением. Причем некоторым насекомым ноги подрезали, удаляя последние членики, а другим, наоборот, удлиняли, приклеивая на концы ног свиные щетинки. Оказалось, что те, у кого ноги стали короче, искали гнездо ближе, чем оно находилось в действительности, а муравьи на "ходулях" убегали в поисках гнезда слишком далеко.

Вывод: при своих передвижениях муравей считает шаги, а чтобы вернуться, делает ровно столько же шагов в обратном направлении, на сколько ушел вперед.

Другие интересные новости:

▪ Автоматическое такси

▪ Консервативный ум

▪ Глаз Громозеки

▪ Платформа XR2 для устройств виртуальной и дополненной реальности

▪ Сердцу не прикажешь

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Биографии великих ученых. Подборка статей

▪ статья Ничтоже сумняшеся (сумняся). Крылатое выражение

▪ статья В какой стране построен отдельный бетонный бункер в расчете на каждую семью? Подробный ответ

▪ статья Няня. Должностная инструкция

▪ статья Сверхнизкочастотный металлоискатель. Энциклопедия радиоэлектроники и электротехники

▪ статья Батарейка из медных пятаков. Химический опыт

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024