Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Электронный регулятор сварочного тока. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Сварочное оборудование

Комментарии к статье Комментарии к статье

Автор предлагаемой статьи делится опытом создания электронного регулятора сварочного тока (ЭРСТ) для многопостовой электросварки. Фирмы, специализирующиеся в области сварочного оборудования, выпускают сегодня ЭРСТ нескольких моделей. Но стоимость их такова, что порой ставит под сомнение экономическую эффективность применения этих устройств. Например, ЭРСТ Multi-Weld 350 фирмы Lincoln Electric стоит более 3000 долл. США. Предлагаемый прибор значительно дешевле аналогов, а благодаря близкому к 100 % КПД он даже при односменной работе окупится в течение года только за счет экономии электроэнергии. Предусмотренная в нем возможность подбирать оптимальную для выполняемой работы нагрузочную характеристику обеспечивает наилучшее качество сварочного шва, практически устраняет разбрызгивание металла. При наличии понижающего трансформатора и выпрямителя достаточной мощности ЭРСТ может стать и основой сварочного аппарата для домашней мастерской.

На тех промышленных предприятиях, где электросварка занимает в технологическом цикле одно из главных мест (например, на судостроительных и судоремонтных заводах), традиционно используют многопостовую сварку. Несколько сварочных рабочих мест (постов) питают от одного мощного источника постоянного или переменного тока напряжением 50...80 В. Относительной независимости работы постов достигают тем, что каждый из них подключен к источнику через индивидуальный балластный реостат, служащий для получения необходимой для сварки крутопадающей нагрузочной характеристики и регулирования сварочного тока. Достоинства такой организации сварочных работ - простота, безопасность, экономия производственной площади и оборудования. К сожалению, общий КПД системы не превышает 30...50 %, потому что значительную часть энергии реостаты рассеивают в виде тепла.

Достижения современной электроники позволяют изготовить ЭРСТ - функциональный аналог балластного реостата с улучшенными эксплуатационными характеристиками и КПД, близким к 100 %, Это не только экономит электроэнергию, но и позволяет подключать к одному источнику тока значительно больше сварочных постов, не превышая его нагрузочной способности.

Обычный сварочный трансформатор предназначен только для сварки определенного вида (ручной, полуавтоматической, автоматической, с плавящимся электродом, с неплавящимся электродом). Созданию универсального источника до недавнего времени препятствовало то, что его внешнюю характеристику определяла в основном конструкция трансформатора. Чтобы получить жесткую нагрузочную характеристику, обмотки трансформатора делают цилиндрическими, а падающую - дисковыми. Некоторой гибкости удавалось достичь, применяя магнитные усилители и трансформаторы специальной конструкции (с магнитным шунтом), но за это приходилось платить значительным увеличением массы и габаритов источников. В электронном сварочном источнике нагрузочную характеристику любого требуемого вида формируют не параметрически, а за счет обратной связи по напряжению и току нагрузки.

КПД предлагаемого ЭРСТ - не менее 92 %. Он работает при напряжении первичного источника 50...80 В и позволяет вести непрерывную сварку током 10...315 А. Допускается кратковременное увеличение сварочного тока до 350 А. Предусмотрена оперативная регулировка наклона нагрузочной характеристики от крутопадающей до жесткой. Это делает ЭРСТ пригодным как для ручной, так и для полуавтоматической сварки. Прибор снабжен защитой от неправильной полярности питающего напряжения, его чрезмерного повышения и понижения, от перегрузки по току и от перегрева, что гарантирует надежную работу в производственных условиях.

Работа ЭРСТ основана на преобразовании с помощью полупроводникового прерывателя постоянного входного напряжения в импульсное регулируемой скважности с последующей фильтрацией - выделением постоянной составляющей импульсов. Благодаря тому что полевые транзисторы прерывателя в открытом состоянии имеют очень малое, а в закрытом - очень большое сопротивление, рассеиваемая на них мощность сравнительно невелика.

Схема ЭРСТ изображена на рис. 1. Зажим Х1 соединяют с плюсом первичного источника. Его минус и зажим ХЗ соединяют со свариваемой деталью, играющей роль общего провода. Держатель сварочного электрода подключают к зажиму Х2.

Электронный регулятор сварочного тока
(нажмите для увеличения)

Конденсаторы С1, С2 и C3-С22 устраняют влияние на работу ЭРСТ выходного сопротивления источника и индуктивности соединительных проводов. Сразу после подачи на ЭРСТ напряжения эти конденсаторы начинают заряжаться через ограничительный резистор R2 и находящийся в блоке зарядки и контроля напряжения питания (А2) диод. Когда конденсаторы заряжены полностью и при условии, что напряжение между зажимами Х1 и ХЗ в норме (50...80 В), зажигается светодиод HL1 "Готов", а внутри блока А2 срабатывает реле, замыкая контакты, подающие напряжение в цепь включения ЭРСТ.

Для включения достаточно нажать на кнопку SB1 "Пуск". Сработавший контактор КМ1 зашунтирует кнопку контактами КМ 1.1. Через замкнувшиеся силовые контакты KM1.2 напряжение источника поступит на конденсаторы С1 - С22, минуя зарядную цепь. Благодаря резистору Р1 контактор KM1 останется сработавшим (а ЭРСТ включенным) до нажатия на кнопку SB2 "Стоп". Если входное напряжение выйдет за допустимые пределы в процессе работы ЭРСТ, он будет выключен разомкнувшимися контактами реле блока А2.

Во включенном ЭРСТ заработает блок питания А1. Он служит для получения гальванически развязанных напряжений, необходимых для питания блоков A3 и А4. Кроме того, блок А1 формирует трехфазное напряжение 220 В 50 Гц для вентиляторов М1 и М2, обдувающих теплоотводы мощных полупроводниковых приборов.

Главный функциональный узел ЭРСТ - понижающий преобразователь напряжения - состоит из коммутирующего транзистора (батареи полевых транзисторов VT1- VT20), разрядного диода (VD9-VD48, соединенных параллельно) и сглаживающего фильтра (дросселя L1, батареи конденсаторов С27-C36). Тем, кто желает подробнее разобраться в работе преобразователя, можно порекомендовать воспользоваться литературой [1, 2].

Полевые транзисторы с изолированным затвором обладают положительным температурным коэффициентом сопротивления открытого канала. Это обстоятельство благоприятствует равномерному распределению токовой нагрузки между транзисторами, позволяя соединять их параллельно. Резисторы R3-Р.22 подавляют паразитные колебания управляющего напряжения.

Для диодов КД213Б, образующих разрядный диод преобразователя, характерно довольно большое время восстановления обратного сопротивления. Иногда к моменту открывания коммутатора они не успевают полностью закрыться. Во избежание нежелательных последствий транзисторы и диоды разделены обмоткой I трансформатора Т1, индуктивность которой (1,7 мкГн) ограничивает скорость нарастания "сквозного" тока, не позволяя ему достичь опасного значения. После полного закрывания разрядного диода энергия, накопленная в магнитном поле трансформатора, возвратится в источник питания - импульс, наведенный в обмотке II трансформатора, подзарядит конденсаторы С1 и С2 через диод VD8. А при резком сбросе нагрузки ЭРСТ батарея диодов VD49-VD54 обеспечит рекуперацию (возврат в источник) энергии, накопленной в магнитном поле дросселя L1.

Блок А4 измеряет выходные ток и напряжение ЭРСТ и генерирует управляющие импульсы, изменяя их скважность таким образом, чтобы обеспечить заданную органами управления "Наклон" и "Уровень" форму нагрузочной характеристики ЭРСТ. Эти импульсы через блок A3, усиливающий их по мощности, поступают на затвор коммутирующего транзистора (VT1-VT20). Кроме того, блок A3 содержит узлы защиты, запрещающие открывание коммутирующего транзистора до окончания цикла рекуперации трансформатора Т1 и в случае перегрева. О нем сигнализирует светодиод HL2.

Конденсаторы С1 и С2 - оксидные K50-18, остальные - пленочные K73-17. Резисторы R1, R2 - ПЭВ-25, R3-R32 - МЛТ указанной на схеме мощности. Резистор R33 - унифицированный внешний шунт 75ШИСВ-500 к амперметру на 500 А. Подойдут и шунты других типов, рассчитанные на указанный ток, с падением напряжения при номинальном токе - 75 мВ. В цепь протекания сварочного тока включают мощные выводы шунта, снабженные болтами большого диаметра. Провода всех других цепей подключают к измерительным выводам с болтами меньшего диаметра.

Транзисторы VT1-VT20 и диоды VD9-VD48 установлены на двух теплоотводах, площадь активной поверхности каждого из которых - 3400 см2. Вентиляторы М1 и М2 - 1,25ЭВ-2,8-6-3270У4 суммарной производительностью 560 м3/ч обдувают теплоотводы. В воздушном потоке, создаваемом вентиляторами, находятся и резисторы R23-R32, рассеивающие значительную мощность.

Контактор KM1 взят из осциллятора LHF-500 фирмы KEMPPI. Его обмотка перемотана на напряжение 50 В (оригинальная рассчитана на 24 В). Можно использовать другой контактор (например, из числа используемых в электрокарах), способный коммутировать постоянный ток не менее 200 А. В крайнем случае подойдет унифицированный электромагнитный пускатель четвертой или пятой величины, все группы силовых контактов которого соединяют параллельно.

Выбрав контактор, необходимо измерить напряжение постоянного тока Uc, при котором он срабатывает. Если оно значительно ниже 50 В или больше этого значения, обмотку контактора придется перемотать. Удаляя имеющуюся обмотку, подсчитывают число ее витков w, и измеряют диаметр провода d. Новые значения вычисляют по формулам:

Трансформатор Т1 намотан на П-образном магнитопроводе из феррита М2000НМ от строчного трансформатора ТВС110АМ (ТВС110ЛА) лампового телевизора серии УНТ47/59. В каждый из стыков магнитопровода вставлены немагнитные прокладки толщиной 3 мм. Первичная обмотка - два витка жгута из 236-ти эмалированных проводов диаметром 0,55 мм. Вторичная обмотка - 16 витков жгута из десяти таких же проводов. Чтобы обеспечить максимальную связь между обмотками, вторичную располагают в объеме первичной. Для предотвращения межвитковых или межобмоточных замыканий жгут проводов вторичной обмотки перед намоткой нужно защитить лентой из лакоткани или фторопластовой пленкой.

Магнитопровод дросселя L1 - Ш32х80 из листовой трансформаторной стали толщиной 0,35 мм. Обмотка дросселя - восемь витков жгута из 330 эмалированных проводов диаметром 0,55 мм. Магнитопровод собирают встык. В его зазор вставляют немагнитную прокладку толщиной 1,6... 1,7 мм.

БЛОК А1

Структурная схема блока питания ЭРСТ показана на рис. 2. Нестабилизированное входное напряжение через узел защиты поступает на линейный стабилизатор, питающий напряжением 15 В все маломощные узлы блока, и на импульсный стабилизатор, постоянное напряжение 36 В с выхода которого полумостовой инвертор преобразует в переменное частотой приблизительно 12,5 кГц. Упомянутый выше узел защиты отключит блок, если в результате неисправности или сбоя выходное напряжение импульсного стабилизатора превысит допустимое значение."

Электронный регулятор сварочного тока

Питание полумостового инвертора стабилизированным напряжением обеспечивает групповую стабилизацию напряжения на вторичных обмотках трансформатора Т1. Изолированные от общего провода ЭРСТ и друг от друга выпрямители 1 и 2 питают блоки А4 и A3. Трехфазный инвертор преобразует постоянное напряжение 270 В с выхода выпрямителя 3 в переменное трехфазное 220 В, 50 Гц для питания вентиляторов, обдувающих теплоотводы мощных полупроводниковых приборов ЭРСТ.

Прототипом мощной ступени импульсного стабилизатора напряжения послужил узел, примененный в [3]. Его упрощенная схема показана на рис. 3. Управляющие импульсы положительной полярности поступают на базу транзистора VT2. В паузах между ними этот транзистор закрыт и к участку затвор-исток транзистора VT1 через резистор R3 приложено в открывающей полярности напряжение конденсатора С2, заряженного во время предшествующего паузе импульса. Транзистор VT1 открыт, и текущий через его канал и дроссель L1 нарастающий ток заряжает конденсатор ёC3. Накопленная конденсатором С2 энергия частично расходуется на зарядку емкости затвор-исток транзистора VT1. Диод VD1 нужен для предотвращения разрядки конденсатора С2 через транзистор VT1.

Электронный регулятор сварочного тока

Открытый управляющим импульсом транзистор VT2 соединяет с общим проводом затвор транзистора VT1. Последний закрывается, а ток дросселя L1, спадая, продолжает течь через открывшийся диод VD2. Напряжение на истоке транзистора VT1 и на правой (по схеме) обкладке конденсатора С2 в этом состоянии равно прямому падению напряжения на диоде VD2, отрицательному относительно общего провода. По цепи VD1R2 конденсатор С2 заряжается.

Для управления полевыми и биполярными транзисторами однотактных и двухтактных инверторов имеется множество микросхем. Но обычно их выходные сигналы "привязаны" к потенциалу общего провода, что делает проблематичным применение таких микросхем в мостовых и полумостовых инверторах. Дело в том, что управляющие электроды "верхних" транзисторов выходных ступеней подобных инверторов находятся под большим и, как правило, переменным напряжением относительно общего провода.

Микросхемы-драйверы мостовых и полумостовых инверторов [4] из-за большой стоимости пока не получили широкого распространения среди радиолюбителей. Они предпочитают решать эту проблему по-своему, применяя, как правило, оптическую или трансформаторную развязку цепей управления [5, 6].

Однако такая развязка вовсе не обязательна. Возможная схема полумостового инвертора с цепями управления без нее показана на рис. 4. Противофазные импульсные последовательности Uy1 и Uy2 поступают от ШИ-контроллера.

Электронный регулятор сварочного тока

Основной недостаток узла, собранного по этой схеме, состоит в том, что он работоспособен лишь при напряжении питания Uп1, не превышающем максимально допустимого напряжения между затвором и истоком полевого транзистора VT3. Дело в том, что в результате реакции активно-индуктивной или активно-емкостной нагрузки напряжение на истоке транзистора VT3 может отставать по фазе от управляющего на затворе или опережать его, что приводит к появлению кратковременных отрицательных импульсов напряжения затвор-исток, амплитуда которых достигает напряжения питания Uп1.

На рис. 5 показаны дополнительные элементы, исправляющие отмеченный недостаток. Диод VD2, открываясь при отрицательной полярности напряжения между затвором и истоком транзистора VT3, ограничивает его на очень низком, равном прямому падению напряжения на открытом диоде уровне. Избыток напряжения гасит резистор R8.

Электронный регулятор сварочного тока

Конденсатор С1 в данном случае заряжается через диод VD1 непосредственно от источника питания. Резистор R4 (см. рис. 4), бесполезно рассеивавший довольно значительную мощность, из нового варианта узла исключен.

Литература

  1. Найвельт Г. и др. Источники электропитания РЭА. Справочник. - М.: Радио и связь, 1986, с. 306-328.
  2. Семенов Б. Силовая электроника для любителей и профессионалов. М.: Солон-Р, 2001, с 126-140.
  3. Граф Р. Электронные схемы. 1300 примеров. - М.: Мир, 1989, с. 424.
  4. International Rectifier's Shortform Catalog, 50th Anniversary Edition. March 1997, p. 136-139.
  5. Дубровский А. Регулятор частоты вращения трехфазных асинхронных двигателей. - Радио, 2001, № 4, с 42, 43.
  6. Полей И. Преобразователь для питания бытовой аппаратуры. - Радио, 2003, № 1, с. 29-32.

Автор: В.Володин, г.Одесса, Украина

Смотрите другие статьи раздела Сварочное оборудование.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Миниатюрная модульная камера Mokacam 13.12.2015

Рынок сверхкомпактных камер нельзя назвать пустующим. Чего стоит только тот факт, что через несколько месяцев продаж стоимость GoPro Hero4 Session упала в два раза. И это при том, что GoPro является лидером сегмента "экшн-камер".

Создатели камеры Mokacam решили хоть как-то выделиться и сделали свое устройство модульным. Сама камера заключена в корпус размерами 45 х 45 х 35 мм массой 96 г и, по заявлению производителя, является самой маленькой камерой 4K в мире.

Она располагает 16-мегапиксельным датчиком Sony IMX206, широкоугольным объективом (152 градуса), модулем Wi-Fi, слотом для карт microSD, защищена от воды и способна снимать видео формата 1080p при 60 к/с. А вот видео 4K записывается лишь при 15 к/с, что заставляет усомниться в целесообразности такого режима. Ёмкость АКБ составляет 1000 мАч.

Что же касается модульности, она реализована достаточно просто. На правой грани расположен специальный разъем для подключения небольшого экрана. Он в свою очередь располагает дополнительным аккумулятором емкостью 1100 мАч. Кроме этого, на тыльной стороне присутствует магнитное крепление для еще одного аккумулятора аналогичной емкости. Собственно, иных модулей нет. К слову, благодаря тыльному магниту камеру можно крепить на металлические поверхности. Поставки должны начаться уже через несколько месяцев.

Стоимость камеры для участников кампании на Indiegogo стартует с отметки $100, тогда как итоговая стоимость будет равна $170.

Другие интересные новости:

▪ Треугольная сингулярность

▪ Причины теплой зимы 2011/2012

▪ Запас хода электромобиля зависит от температуры за бортом

▪ Ночной сторож - профессия для Интернета

▪ Домашняя уборка способствует релаксу

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Компьютерные устройства. Подборка статей

▪ статья Макс Штирнер. Знаменитые афоризмы

▪ статья Чем определяется ценность алмазов? Подробный ответ

▪ статья Расчет трансформатора. Справочник

▪ статья Пробник-генератор. Энциклопедия радиоэлектроники и электротехники

▪ статья Ребусы детские

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024