Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Трехканальный сигнализатор повышенной температуры. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Регуляторы мощности, термометры, термостабилизаторы

Комментарии к статье Комментарии к статье

Не секрет, что причина значительной части неисправностей бытовой электронной аппаратуры - неоптимальный тепловой режим работы ее компонентов, приводящий к их ускоренной деградации и последующему выходу из строя. Предлагаемый прибор позволяет контролировать температуру одновременно в трех точках: в двух - по превышению установленных заранее фиксированных значений, а в третьей - по значению, установленному заранее или в процессе испытаний. Прибор может оказаться полезным при разработке или ремонте таких устройств, как импульсные источники питания, стабилизаторы напряжения, усилители мощности ЗЧ и т. п.

Устройство, о котором пойдет речь, предназначено для контроля рабочей температуры компонентов налаживаемых или отремонтированных устройств в период их испытаний, но может быть и встроено в какой-либо аппарат на постоянной основе. От конструкции [1] отличается наличием трех каналов контроля температуры вместо одного. Два из них включают сигнализацию при превышении температурой установленных заранее фиксированных значений, третий канал регулируемый, его можно оперативно настроить на любую температуру в интервале 5...100 оС.

Трехканальный сигнализатор повышенной температуры
Рис. 1 (нажмите для увеличения)

Схема предлагаемого вниманию читателей трехканального светозвукового сигнализатора повышенной температуры представлена на рис. 1. Устройство выполнено на основе популярной микросхемы LM339N, представляющей собой четыре независимых компаратора с выходом открытый коллектор, способных работать при однополярном напряжении питания от 2 до 36 В. Как видно, на инвертирующие входы компараторов DA2.1-DA2.3 подано образцовое напряжение с делителя R5R2, а на неинвертирующие - напряжение с делителей, одно плечо которых образовано терморезистором (RK1-RK3), а другое - подстроечным (переменным) резистором (R4, R8, R11) и включенным последовательно с ним постоянным (R3, R7, R10). Пока температура терморезистора, например, RK1 меньше заданной максимальной, его сопротивление относительно велико, напряжение на неинвертирующем входе (вывод 7) компаратора DA2.1 больше, чем на инвертирующем (вывод 6), его выходной транзистор закрыт и напряжение на выходе (вывод 1) имеет высокий уровень, поэтому светодиод HL2 не светит. С повышением температуры сопротивление терморезистора уменьшается. В результате понижается напряжение на выводе 7 DA2.1, и как только оно становится меньше напряжения на выводе 6, компаратор переключается (высокий уровень напряжения на выводе 1 сменяется низким) и светодиод HL2 начинает светить. Аналогично работают каналы сигнализатора на компараторах DA2.2 и DA2.3. Конденсаторы С6-С9 уменьшают чувствительность устройства к наводкам и помехам.

На компараторе DA2.4 собран генератор сигнала звуковой частоты, который включается при срабатывании любого из компараторов DA2.1-DA2.3 (когда уровень напряжения на его выходе становится низким). Пока ни один из них не сработал, транзистор VT1 открыт и блокирует работу генератора, на его выходе в это время присутствует напряжение высокого уровня. При срабатывании любого из указанных компараторов транзистор VT1 закрывается и генератор на компараторе DA2.4 начинает работать. Частота его колебаний зависит главным образом от емкости конденсатора C11 и сопротивления резистора R19. Включенный последовательно со звукоизлучателем HA1 резистор R20 уменьшает громкость звучания. Резисторы R1, R6, R9, R12 ограничивают ток через светодиоды.

Микросхема DA2 питается стабилизированным напряжением 5 В от стабилизатора на микросхеме DA1. Диод Шотки VD1 защищает микросхему DA1 при ошибочной полярности напряжения питания, а также позволяет питать устройство от источника переменного напряжения 7...15 В. Светодиод HL1 светит при наличии напряжения на выходе стабилизатора. В ждущем режиме устройство потребляет от блока питания ток около 8 мА, при включении светозвуковой сигнализации - примерно 25 мА.

Трехканальный сигнализатор повышенной температуры
Рис. 2

Большинство деталей сигнализатора установлены на монтажной плате размерами 65x40 мм (рис. 2), монтаж навесной, соединения выполнены тонкими разноцветными проводами в ПВХ изоляции. Для предотвращения случайных замыканий и повышения механической прочности монтаж на стороне соединений покрыт цапонлаком.

Применены постоянные резисторы МЛТ, С2-33, подстроечные R4, R8 и переменный R11 - импортные малогабаритные. Для облегчения точной установки порогов срабатывания сигнализатора можно применить так называемые многооборотные подстроечные резисторы, например, СП3-39, СП5-2, СП5-14.

Терморезисторы RK1-RK3 - малогабаритные с отрицательным ТКС и сопротивлением при комнатной температуре 10.100 кОм. Подходящие по параметрам и размерам терморезисторы часто встречаются в печатающих головках матричных принтеров и в малогабаритных шаговых электродвигателях. Для подключения терморезисторов к плате сигнализатора использованы тонкие экранированные провода длиной около 1000 мм, экранирующие оплетки соединены с общим проводом. Последние 50 мм со стороны терморезисторов выполнены тонким проводом МГТФ.

При использовании терморезисторов значительно большего, чем указано на схеме, сопротивления следует применить подстроечные и переменный резисторы пропорционально большего сопротивления. При отсутствии терморезисторов в качестве датчиков температуры можно применить маломощные малогабаритные германиевые диоды или германиевые транзисторы [2].

Конденсаторы C1, C3, C4, C7-C11 - керамические малогабаритные, например, К10-17, К10-50, остальные - оксидные К50-68, К53-19, К53-30 или аналоги. Диод Шоттки MBR0540T1 заменим любым из 1N5819, SB140, SB150, MBRS140T3, а диоды 1N4148 - любыми из КД510А, КД521А-КД521Д, КД522А, КД522Б, 1N914, 1SS244.

Вместо транзистора 2SC3199 можно применить любой из 2SC815, 2SC1815, 2SC1845, SS9014, а также серий КТ645, КТ3102. Возможная замена микросхемы LM339N - LM139, LM239, LM339, LM2901, MC3302, KIA339, BA10339 (для удобства монтажа предпочтительно использовать микросхему в корпусе DIP14). Интегральный стабилизатор напряжения KA78L05AZ можно заменить любым из серий 78L05 в корпусе TO-92. При напряжении питания более 15 В последовательно с диодом VD1 желательно включить добавочный резистор с рассеиваемой мощностью 0,5 Вт, сопротивление которого следует подобрать так, чтобы при работающей сигнализации напряжение на входе DA1 не выходило за пределы 10.13 В.

Светодиоды RL30N-YG414S (зеленого цвета свечения), RL30N-HY214S (желтого) и RL30N-DR314S (красного) можно заменить любыми аналогичными без встроенных резисторов. Возможно применение в качестве HL2-HL4 мигающих светодиодов, например, DFB3b-145, L-36BSRD/B, L-36BYD. Возможная замена электромагнитного звукоизлучателя DBX-12PN (сопротивление обмотки - около 133 Ом) - динамический SD-150 (120 Ом). Чтобы не перегрузить выходную ступень компаратора, суммарное сопротивление звукоизлучателя и резистора R20 должно быть не менее 150 Ом. Звукоизлучатель с обмоткой значительно меньшего сопротивления или малогабаритную динамическую головку подключают либо через выходной трансформатор от карманного радиоприемника, либо изменив схему устройства, как показано на рис. 3.

Трехканальный сигнализатор повышенной температуры
Рис. 3

Все детали сигнализатора размещены в пластмассовом корпусе размерами 92x48x17 мм от точилки карандашей (рис. 4). Для удобства пользования регулируемым каналом на валике переменного резистора R11 закреплена ручка управления с лимбом, на который нанесена шкала с отметками от 0 до 100 оС. Для настройки порогов срабатывания устройства удобно использовать цифровой мультиметр с выносной термопарой. Ее и термодатчики прибора связывают вместе тонкой медной проволокой, помещают в водонепроницаемый пластиковый пакет и опускают в какую-либо компактную закрытую емкость, наполненную водой. Нагрев ее до нужной (по показаниям мультиметра) температуры, с помощью подстроечных резисторов R4, R8 или переменного R11 (в зависимости от калибруемого канала) добиваются того, чтобы при этой температуре включался звуковой сигнал и начинал светить соответствующий светодиод.

Трехканальный сигнализатор повышенной температуры
Рис. 4

В авторском варианте устройства нерегулируемые каналы с помощью подстроечных резисторов настроены на порог включения 65 оС. Это значение температуры обычно считается оптимальным при контроле за нагревом трансформаторов питания, мощных транзисторов и микросхем, установленных на теплоотводы. Регулируемый канал может быть применен, например, для контроля температуры в корпусе устройства.

Литература

  1. Бутов А. Индикатор повышенной температуры на KIA6966S. - Радио, 2010, № 6, с. 27, 28.
  2. Бутов А. Индикатор перегрева теплоотвода. - Радио, 2002, № 5, с. 53.

Автор: А. Бутов

Смотрите другие статьи раздела Регуляторы мощности, термометры, термостабилизаторы.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Чехол для смартфона с надувными подушками безопасности 10.12.2013

Компания Honda продемонстрировала концептуальный защитный футляр для смартфонов, который оснащён небольшими подушками безопасности: они выстреливаются в случае риска падения, предотвращая повреждение аппарата.

В текущем виде прототип чехла наделён собственным аккумулятором, небольшим баллоном с углекислым газом и акселерометром. Сигнал от последнего служит командой для открытия специального клапана, который подаёт газ в шесть небольших надувных подушек, расположенных по всему периметру футляра.

Отмечается, что система срабатывает после приблизительно 90 см свободного падения. Время раскрытия подушек составляет 0,2 с.

Разумеется, пока футляр Honda является не более чем экспериментальным изделием. Он слишком громоздок для повседневного использования и, судя по всему, не способен защитить смартфон при падении экраном вниз на острый выступающий предмет, скажем, камень. К тому же не ясно, могут ли подушки использоваться повторно после срабатывания или потребуют полной замены.

Но не исключено, что в перспективе технология в модифицированном виде будет реализована в коммерческих защитных футлярах. Кстати, ровно год назад патентное ведомство США выдало патент на похожую разработку веб-магазину Amazon: компания Джеффа Безоса предлагает встраивать крошечные подушки безопасности непосредственно в мобильное устройство. Они будут раскрываться по сигналу от акселерометра или камеры, предотвращая выход аппарата из строя при падении.

Другие интересные новости:

▪ Раскопки у Стоунхенджа

▪ Универсальный блок сенсоров для управления аэротакси

▪ Радиомаяки отслеживают Android и iOS-устройства

▪ Оптоволокно для квантового интернета

▪ Акустический левитатор для переноса еды

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Измерительная техника. Подборка статей

▪ статья Аверроэс (Абуль Валид Мухаммад ибн Ахмад ибн Рушд). Знаменитые афоризмы

▪ статья Во время какой войны США были единственной дружественной России державой? Подробный ответ

▪ статья Старшина (бригадир) водолазной станции. Типовая инструкция по охране труда

▪ статья Простой сварочный аппарат. Энциклопедия радиоэлектроники и электротехники

▪ статья Стабилизатор-зарядное устройство с регулировкой напряжения и тока. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024