Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


ЭНЦИКЛОПЕДИЯ РАДИОЭЛЕКТРОНИКИ И ЭЛЕКТРОТЕХНИКИ
Бесплатная библиотека / Электрику

Контроль частоты вращения воздушного винта. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Электродвигатели

Комментарии к статье Комментарии к статье

При отработке винтомоторных установок аэросаней, мотодельтапланов, самолетов, а также авиамоделей конструктору требуется знать точные значения ряда параметров. И самое главное - частоту вращения воздушного винта. Это необходимо и при форсировке двигателей, и при подборе пропеллера. Частота вращения является также одним из основных параметров в процессе эксплуатации мотора: по величине этого параметра можно объективно судить о надежности работы двигателя.

Во многих случаях "привязать" к винтомоторной установке какой-либо из стандартных тахометров просто невозможно: Ну а когда дело касается модельных двигателей, то контактные замеры могут настолько исказить их работу, что о каких-либо тонкостях регулировки уже не может быть и речи.

Предлагаю вниманию читателей бесконтактный электронный тахометр, предназначенный для измерения частоты вращения воздушного винта без использования каких-либо механических связей датчика с валом двигателя.

Тахометр состоит из двух основных частей - датчика и частотомера (рис. 1).

Контроль частоты вращения воздушного винта
Рис. 1. Блок-схема тахометра: 1 - датчик, 2 - частотомер, 3 - индикатор, 4 - калибратор.

Датчик вырабатывает импульсные сигналы, следующие с частотой, кратной скорости вращения винта. Кратность при этом определяется количеством лопастей. Для данного тахометра можно использовать два типа датчиков: электростатический и оптический.

Разработанный специально для описываемого прибора электростатический датчик преобразует заряд накапливающийся на лопастях вращающегося винта при трении о воздух, в импульсное напряжение. Для этого в датчике имеется чувствительный элемент (рис. 2) - узкая, из металлической пластины или проволоки антенна, устанавливаемая параллельно плоскости вращения винта.

Контроль частоты вращения воздушного винта
Рис. 2. Принцип работы электростатического датчика (а) и оптического датчика (б): 1 - воздушный винт, 2 - чувствительный элемент (антенна) электростатического датчика, 3 - усилитель, 4 - источник света, 5 - светоприемник с чувствительным элементом оптического датчика, 6 - усилитель.

При прохождении заряженных лопастей мимо антенны в ней будет наводиться переменное напряжение, частота которого будет определяться выражением (K*N)/60, где К - количество лопастей винта, N - частота вращения винта (об/мин).

Антенна электростатического датчика является источником низкого (порядка единиц милливольт) напряжения с очень высоким внутренним сопротивлением, равным сопротивлению изоляции. Для обеспечения нормальной работы частотомера это напряжение подводится к усилителю с высоким входным сопротивлением (рис. 3).

Контроль частоты вращения воздушного винта
Рис. 3. Принципиальная схема электростатического датчика

Высокое входное сопротивление достигается применением согласующего каскада, являющегося комбинацией потокового повторителя на полевом транзисторе VT1 и эмиттерного повторителя на биполярном транзисторе VT2. Операционный усилитель DA1 обеспечивает усиление сигналов до уровня, достаточного для работы частотомера.

Оптический датчик состоит из источника света, чувствительного элемента - фотодиода или фоторезистора - и усилителя.

Источник света и чувствительный элемент располагают так, чтобы луч проходил через плоскость винта. При вращении лопасти периодически пересекают луч, падающий на включенный между базой и эмиттером чувствительный элемент (рис. 4), периодически изменяя его сопротивление и тем самым образуя на базе транзистора переменное напряжение.

Контроль частоты вращения воздушного винта
Рис. 4. Принципиальная схема оптического датчика

Полученные импульсы усиливаются двухкаскадным усилителем до величины, достаточной для работы частотомера.

Частотомер преобразует полученные отдатчиков импульсы в постоянный ток, пропорциональный частоте следования импульсов. Его основным элементом является ждущий мультивибратор на транзисторах VT5 и VT6 (рис. 5).

Контроль частоты вращения воздушного винта
Рис. 5. Принципиальная схема частотомера

При поступлении на ждущий мультивибратор сигналов с датчиков он вырабатывает импульсы постоянной длительности, определяемой только величинами резисторов и емкостей схемы.

При вращении винта на выходе ждущего мультивибратора образуется последовательность импульсов с постоянной амплитудой и длительностью, частота следования которых пропорциональна скорости вращения винта.

Полученная импульсная последовательность содержит постоянную составляющую, величина которой зависит от так называемой скважности - отношения периода следования импульсов к их длительности, то есть и от скорости вращения винта.

Постоянная составляющая выделяется интегрированием импульсной последовательности. Интегрирующим элементом является стрелочный прибор РА1, служащий одновременно и для индикации скорости вращения винта. В данном случае была использована магнитоэлектрическая головка на 100 мкА с добавочным резистором R22. Может быть применен и более грубый прибор. Переменный резистор R21 используется при калибровке тахометра. Для развязки интегратора и ждущего мультивибратора используется эмиттерный повторитель на транзисторе VT7.

Питание прибора осуществляется от батарей или от выпрямителя с напряжением 9,5 В.

При изготовлении тахометра может быть принято любое конструктивное исполнение, но наиболее целесообразной представляется конструкция в виде двух блоков - датчика и частотомера с индикатором, связанных между собой трехпроводным кабелем.

Электростатический датчик должен тщательно экранироваться. Антенна датчика может быть выполнена из отрезка медной проволоки, узкой полоски латуни или фольгированного стеклотекстолита. При проведении измерений она должна располагаться параллельно плоскости вращения винта на расстоянии, обеспечивающем нормальную работу прибора.

Для повышения точности измерения скорости вращения винта перед началом работы необходимо проводить калибровку тахометра, для чего в его состав введен калибратор (встроенный или выносной). Калибратор представляет собой мультивибратор (рис. 6), генерирующий короткие импульсы, частота следования которых определяется величинами резисторов R24, R25 и емкостей C6, C7 и выбирается, исходя из диапазона измеряемых скоростей. Для достаточной точности измерений калибровку нужно проводить в двух-трех точках диапазона скоростей. При этом необходимые частоты следования импульсов для двухлопастного винта определяются выражением f=N/30.

Контроль частоты вращения воздушного винта
Рис. 6. Принципиальная схема калибратора и таблица значений R25 для калибровочных точек.

В таблице (см. рис. 6) приведены значения резисторов R24 и R25 для различных скоростей вращения винта. Точная установка частоты осуществляется подстроечным резистором R30, при этом контроль установки частоты проводится с помощью высокоточного цифрового частотомера.

Получить несколько значений частоты можно путем ступенчатого изменения резисторов R24 и R25 или применением нескольких генераторов.

Автор: В.Евстратов

Смотрите другие статьи раздела Электродвигатели.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Качественная цветная лазерная печать без чернил и тонера 05.06.2017

Создание изображений с рекордной на сегодняшний день разрешающей способностью является результатом работы новой технологии цветной лазерной печати, разработанной в свое время группой Андерса Кристенсена (Anders Kristensen) из Датского Технического университета (Technical University of Denmark), Копенгаген. "Стрельба" лучом лазера по поверхности материала, покрытого массивом наноразмерных пластиковых столбиков, приводит к изменениям характера поверхности, которая начинает отражать свет с определенной длиной волны.

Лазерный луч нагревает верхнюю часть каждого наноразмерного столбика до температуры в 1000 градусов Цельсия. Находясь при такой температуре в течение нескольких наносекунд, слой германия, покрывающий верхнюю часть столбиков, оплавляется и изменяет форму. Управление мощностью лазера позволяет вызвать различные степени оплавления и, как следствие, превратить столбики в пиксели, отражающие свет с определенной диной волны. Воздействие низкоэнергетических импульсов лазера позволяет окрасить поверхность в синий цвет, а увеличение мощности приводит к окраске поверхности в желтый и красный цвета.

Каждый из столбиков имеет диаметр в несколько десятков нанометров, что позволяет разместить десятки тысяч столбиков на квадратном сантиметре площади поверхности. Приведенные здесь изображения были напечатаны с разрешающей способностью в 127 тысяч точек на дюйм. Для сравнения, разрешающая способность экрана iPhone 7 составляет 326 точек на дюйм.

К сожалению, создаваемая таким способом гамма цветов не блещет яркостью и богатством цветов. Таким способом невозможно получить зеленый цвет и оттенки синего, а создаваемый красный цвет является очень тусклым. Однако исследователи уже думают над заменой германия кремнием, который имеет несколько иной спектр отражения света. И при помощи кремния можно будет получить зеленый цвет, что, в свою очередь, позволит печатать яркие полноцветные изображения.

Новая технология лазерной печати вряд ли когда-нибудь появится в виде настольного принтера. Зато она имеет перспективы для облегчения жизни дизайнеров, модельеров и людей прочих творческих специальностей. К примеру, автпроизводители смогут изготавливать на одном конвейере детали внутреннего интерьера кабины, которые потом будут окрашиваться лазером в необходимый цвет. Помимо этого, новая технология лазерной печати позволит вносить коррективы, конечно в определенных пределах, в уже напечатанные изображения.

Другие интересные новости:

▪ Кому хорошо в одиночестве

▪ Происхождение изумрудов

▪ Компактный переносной холодильник на солнечных батареях

▪ Фантазеры оказались альтруистами

▪ Раскрыт секрет обучения во сне

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта История техники, технологии, предметов вокруг нас. Подборка статей

▪ статья Мендель Грегор. Биография ученого

▪ статья Какие млекопитающие имеют социальную организацию наподобие муравьиной? Подробный ответ

▪ статья Самолюс. Легенды, выращивание, способы применения

▪ статья Доработка расходомера топлива. Энциклопедия радиоэлектроники и электротехники

▪ статья ГПД. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024