Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


ЭНЦИКЛОПЕДИЯ РАДИОЭЛЕКТРОНИКИ И ЭЛЕКТРОТЕХНИКИ
Бесплатная библиотека / Электрику

Электронные пускорегулирующие аппараты. ЭПРА, позволяющий регулировать яркость лампы. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Пускорегулирующие аппараты люминесцентных ламп

Комментарии к статье Комментарии к статье

Данный однотактный преобразователь позволяет регулировать яркость лампы и устанавливать ее такой, чтобы энергия батареи расходовалась более экономно. На рис. 3.78 показана его схема.

Преобразователь состоит из задающего генератора и однотактного усилителя мощности. Генератор выполнен на элементах DD1.1-DD1.3. Такой генератор позволяет изменять скважность импульсов (т. е. отношение периода следования импульсов к их длительности) переменным резистором R1, что определяет яркость ЛЛ. К генератору подключен буферный элемент DD1.4.

Сигнал с DDI.4 подается на усилитель мощности, выполненный на транзисторах VT1, VT2. Нагрузка усилителя - ЛЛ (ELI), подключенная через повышающий трансформатор Т1. Допустимо подключать лампу как с замкнутыми выводами нитей накала (показано на схеме), так и с разомкнутыми. Иначе говоря, целостность нитей накала лампы не играет роли.

ЭПРА, позволяющий регулировать яркость лампы
Рис. 3.78. Схема однотактного преобразователя с регулировкой яркости

Питается преобразователь от источника постоянного тока напряжением 6-12 В, способного отдавать в нагрузку ток до нескольких, ампер (в зависимости от мощности лампы и установленной яркости). Питание на микросхему поступает через параметрический стабилизатор, в котором работают балластный резистор R4 и стабилитрон VD3. При минимальном питающем напряжении стабилизатор практически не действует, но это не сказывается на работе преобразователя.

Кроме указанных на схеме, допустимо использовать транзисторы КТ3117А, КТ630Б, КТ603Б (VT1), КТ926А, КТ903Б (VT2), диоды серии КД503 (VD1, VD2), стабилитрон Д814А (VD3). Конденсатор С1 - КГ, КМ, К10-17, остальные - К50-16, К52-1, К53-1. Переменный резистор - любой конструкции (например, СП2, СПЗ), постоянные - ОМЛТ-ОД25. Лампа - мощностью от 6 до 20 Вт.

Трансформатор намотан на броневом магнитопроводе из феррита 2000НМ1 наружным диаметром 30 мм. Обмотка I содержит 35 витков провода ПЭВ-2 диаметром 0,45 мм, обмотка II -1000 витков ПЭВ-2 диаметром 0,16 мм. Обмотки разделены несколькими слоями лакоткани.

Для повышения надежности обмотку II необходимо разделить на несколько слоев, прокладывая между ними лакоткань. Чашки магнитопровода собирают с зазором 0,2 мм и стягивают винтом и гайкой из немагнитного материала. С несколько худшими результатами (соотношением "яркость - потребляемый ток") будет работать трансформатор, выполненный на магнитопроводе от строчного трансформатора телевизора.

Налаживание преобразователя начинают с проверки задающего генератора при отключенном выходном каскаде усилителя. К выводу 11 микросхемы подключают осциллограф и наблюдают импульсы, показанные на верхней диаграмме рис. 3.79.

ЭПРА, позволяющий регулировать яркость лампы
Рис. 3.79. Форма напряжения в контрольных точках

Затем устанавливают движок переменного резистора в левое по схеме положение "СОПРОТИВЛЕНИЕ ВВЕДЕНО". Измеряют длительность импульсов и период их следования. Подбором резистора R3 добиваются длительности импульсов примерно 20 мкс, а подбором резистора R2 - периода следования, равного приблизительно 50 мкс. Перемещая после этого движок из одного крайнего положения в другое, убеждаются в изменении периода следования импульсов при неизменной их длительности.

Далее подключают выходной каскад, осциллограф соединяют с коллектором его транзистора, а в цепь питания включают амперметр со шкалой на 2-3 А. Перемещением движка добиваются "пробоя" (резкого увеличения яркости) лампы и контролируют диапазон изменения яркости и потребляемого тока при различных положениях движка резистора. Наблюдают форму импульсов на коллекторе транзистора VT2 - на рис. 3.79 внизу.

Такая форма получилась при работе преобразователя с лампой ЛБ 18. Возможно, придется точнее подобрать резисторы R2, R7, а в некоторых случаях установить переменный резистор другого номинала, чтобы достигнуть необходимых пределов изменения яркости и приемлемого потребляемого тока.

В режиме минимальной яркости, которой соответствует в зависимости от питающего напряжения и мощности лампы ток 250-400 мА, запуск генератора, а значит, включение лампы, удобнее осуществлять нажатием на кнопку SB1. Иногда нелишне попробовать изменить полярность включения лампы и проверить надежность ее зажигания в этом режиме.

Оценить эффективность работы преобразователя с разными транзисторами, трансформаторами, изменениями режимов и т. д. можно так. На расстоянии примерно 0,5 м от лампы укрепляют фотодиод или фоторезистор и подключают к нему омметр. Измеряют его сопротивление при горящей лампе и фиксированном токе потребления преобразователя. Далее проводят замену детали, резистором R1 устанавливают прежний ток и измеряют сопротивление фотоэлемента. Если оно уменьшилось, значит, яркость лампы возросла; результат эксперимента можно считать наилучшим.

Задающий генератор можно реализовать и на широко распространенном таймере КР1006ВИ1 (LM555). На рис. 3.80 приведена такая схема.

Здесь времязадающие резисторы R2, R3 - переменные, в результате чего параметры импульсов и частоту можно менять в широких пределах (рис. 3.30, а), а вариант подключения, показанный на рис. 3.80, б, позволяет изменять ширину импульсов у генератора при неизменной частоте. Частота в этом случае определяется по формуле

Диапазон регулировки скважности зависит от соотношения резисторов R1, R2.

ЭПРА, позволяющий регулировать яркость лампы
Рис. 3.80. Схема задающего генератора на таймере КР1006ВИ1 (LM555)

Вместо усилителя мощности, выполненного на транзисторах VT1, VT2, R7, R7 (см. рис. 3.78), можно применить в усилителе мощности полевой транзистор КП743, IRF510, BUZ21L, SPP21N10 и т. п. (R5 уменьшить до 100 Ом). Схемы такого варианта представлены на рис. 3.81.

Не лишним будет и защита с помощью специального защитного стабилитрона - сапрессора (TRANSIL, TVS, TRISIL) VD1, VD2. Диод VD3 - быстродействующий с малым временем восстановления.

ЭПРА, позволяющий регулировать яркость лампы
Рис. 3.81. Схема усилителя мощности на полевом транзисторе

Автор: Корякин-Черняк С.Л.

Смотрите другие статьи раздела Пускорегулирующие аппараты люминесцентных ламп.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Тормозящее тепло 21.02.2012

В середине 1990-х годов в движении двух американских космических аппаратов - "Пионера-10" и "Пионера-11" была замечена аномалия: оказалось, что они летят чуть медленнее, чем полагается по всем теориям небесной механики. В каждую последующую секунду скорость убывает на 0,00000009 сантиметра в секунду по сравнению с предыдущим отрезком времени. Вроде очень немного, но за 30 лет полёта отклонение от расчётных траекторий составило 400 тысяч километров.

Космическое агентство НАСА долгое время скрывало эти сведения, так как они не поддавались объяснению и тем вроде бы компрометировали профессионализм его сотрудников. Когда всё же данные пришлось опубликовать, физики бросились предлагать разные гипотезы для объяснения странного поведения космических зондов. Говорили о загадочной тёмной материи, ещё более загадочной тёмной энергии, об ошибке в законе тяготения Ньютона, об ошибочности общей теории относительности...

Немецкий физик Клаус Леммерцаль из Бременского университета и его аспирант Бенни Риверс предлагают простое объяснение загадки: "Пионеры" тормозятся теплом, которое они излучают в направлении своего полёта. Построив на компьютере модель космического аппарата из 50 тысяч деталей и изучив тепловой баланс и потоки тепла в модели, физики пришли к выводу, что тепло от двух изотопных батарей на плутонии-238, которые снабжают энергией весь аппарат, излучается вовне неравномерно.

Преимущественно, хотя и с небольшим перевесом, оно выходит из той стороны "Пионера", которая обращена вперёд. Перевес невелик, и энергия фотонов инфракрасной части спектра мала, но за десятки лет полёта накопилось небольшое торможение. Кстати, со временем оно ещё уменьшается - ровно в том темпе, в каком распадается плутоний и слабеет тепловыделение.

Другие интересные новости:

▪ Умное кольцо от Samsung

▪ Крыша вместо бензобака

▪ SONY и TOSHIBA не договорились о видеоформате

▪ Слух вместо зрения

▪ Водяная броня для автомобилей

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Моделирование. Подборка статей

▪ статья Шерлок Холмс. Крылатое выражение

▪ статья Почему в 1948 году Нобелевская премия мира не досталась никому? Подробный ответ

▪ статья Обморожение. Медицинская помощь

▪ статья Почему нежелательно применять ферритовые магнитопроводы. Энциклопедия радиоэлектроники и электротехники

▪ статья Микросхемы серии КР142ЕН17 - стабилизаторы напряжения. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Владимир
Огромное спасибо! Регулятор (ШИМ) на КР1006ВИ1 (NE555) - работает прекрасно. Регулирую двигатель постоянного тока 40 А (якорем - на понижение). Сообщение оставил для следом идущих (ну и благодарность автору)! :) [up] [up]

Андрей
Здравствуйте, формула частоты в этой статье по моим расчетам не является правдивой, приложите источник откуда она взята.

Юрий
На схеме R5-1k тот , что на базу вт1 и R5-510 Ом тот , что на коллекторе вт1. В описание о замене усилителя на полевики очепятка (на транзисторах VT1, VT2, R7, R7 (см. рис. 3.78) Дважды R7.


All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024