Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Цифровой дозиметр ГАММА_1. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Дозиметры

Комментарии к статье Комментарии к статье

Цифровой дозиметр "Гамма_1" предназначен для определения уровня ионизирующей радиации. Реагирует на бета, гамма, а также рентгеновские лучи. Измерение производится за время 1мин в единицах мкр/ч, также единицах превышающий естественный радиационный фон (ЕРФ) ~=15-25 мкр/ч.

Устройство имеет на своем борту

1) англо-русский дисплей 2х16 символов с подсветкой.
2) 3 режима измерения одиночный/цикличный/спящий с пониженным энергопотреблением.
3) 2 ячейки  энергонезависимой памяти для записи значений измерения.
4) Буфер значения предыдущего измерения.
5) Регулируемый уровень тревожной сигнализации с памятью.
6) Свето/звуковая визуализация излучения.

Цифровой дозиметр ГАММА_1. Схема дозиметра
(нажмите для увеличения)

Переключение режимов производится кнопками "<" ">" (SB2/SB3) Включения/ выключения режимов "V" "X" (SB1/SB4) Изначально выбран режим одиночного измерения, нажимаем SB1 производится измерения за время 1мин, после результат заносится в буфер для дальнейшей записи значения и просмотра предыдущего измерения. Для включения режима непрерывного замера необходимо перейти в меню "режим 1-тест/2-цикл" (рис3) нажать "X"-режим 2, "V"-режим 1. Для сохранения результата выбирает меню "Зона1 или зона2" нажимаем  "V" Запись из буфера, нажимаем "X" считываем с ячейки.

Для включения подсветки выбираем меню "Подсветка вкл/выкл"- "X"-выкл, "V"-вкл. Регулировка уровня тревожной сигнализации производится в меню "Тревога/Уровень", кнопками "X"--1, "V"-+1 изменяем уровень и записываем в память.

Уровень изменяется в единицах ЕРФ, При совпадении выбранного уровня с уровнем измеряемым включается тревожный звуковой сигнал и на экране высвечивается  "внимание высокий уровень радиации!".

В спящим режиме производится с пониженным энергопотреблением, блокинг генератор работает в импульсном режиме, отключается подсветка на экране через каждые 10сек выводится "сканирование", в этом режиме не записываются ни какие значения, только реагирует на превышение уровня радиации, звуковым сигналом. Светодиод HL1 и резонатор HA1 сигнализирует о попадание радиоактивной частицы на датчик, HL2 показывает что идет заряд аккумулятора. С помощью одновибратора собранного на DD1 преобразуем импульсы с датчика в импульс нужный по времени и амплитуде для контроллера DD2. Перемычка J1 (по умолчанию не стоит),включает второй датчик и служит для увеличения чувствительности прибора но при этом следует произвести корректировки. Перемычка J1 (по умолчанию стоит)включает акустический излучатель.

Цифровой дозиметр ГАММА_1

Замена деталей

  1. Микросхемы в Dip корпусе, DD1-К561ла7,К176ла7,К1564ла7, DA1-крен5, 78L05.
  2. Транзисторы VT3,4 кт315, кт3107 и другие маломощные N-P-N.
  3. Транзистор VT2 кт361, и другие маломощные P-N-P.
  4. Счетчик Гейгера СБм20 выпускается в трех вариантах заменится на СТС-5 только меняется габариты.
  5. Свето диоды любые на ток 5-20мА.
  6. Тактовые кнопки стандартные 5х7мм.
  7. Акустический излучатель пьезоэлектрического типа, могут быть ЗП-19,
  8. ЗП-5, ЗП-3, ИМПОРТНЫЕ (HPE-227).
  9. Звуковой генератор из серии HCMxxxx, на напряжение от 1-3в.

Для поверстного монтажа

  1. Микросхемы, DD1-CD4011B, DA1-L78m05cdt-tr, DD2-Atmega8 UA tqfp32,
  2. Транзисторы VT3,4 BC847 и другие маломощные N-P-N.
  3. Транзистор VT2 BC857 и другие маломощные P-N-P.
  4. Переменный резистор R10 типа PVZ3A-103

Цифровой дозиметр ГАММА_1

Трансформатор блокинг генератора выполнен на кольце из феррита проницаемостью 2500-4000, типоразмером от К16х10х4,5 мм  до К20х12х6мм или импортное уже скругленное и покрытое лаком кольцо типа B64290-L743-X83  16х9х5.

Обмотки 1-200**витков проводом ПЭВ 0.07мм
2 - 8 витков проводом  ПЭВ или с лучше шелковой изоляцией 0.1-0.3мм
3- 3 витка тем же проводом.
На рисунке 6 показано как правильно мотать и крепить трансформатор.

Цифровой дозиметр ГАММА_1. Интерфейс

Конструкция

Цифровую часть схемы монтируем на плате вмести с кнопками ЖК-модулем и генератором звука.

Высоковольтную часть схемы (рис2) делаем на другой плате, на ней находится блокинг генератор, умножитель, и детекторная камера состоящая из одного или несколько счетчиков Гейгера, под ними вырезаем прямоугольное окно на плате.

Чтобы значительно не ослабить принимаемое излучение, в  нижней части крышки корпуса аккуратно прорезаем окно точно под детекторной камерой, которое следует прикрыть тонкой пластмассой (например от дискеты) с часто просверленными отверстиями.

Устройство питается от напряжения 6-9В, используется аккумулятор крона или 2 последовательно соединенных аккумулятора от мобильника с удаленным в внутренним контроллером заряда, если используется батарейки то цепь заряда следует исключить. Кнопки можно взять из старого тетриса.

Настройка

Настраиваем контрастность дисплея резистором R10, R11-яркость подсветки до наилучшего результата.

Самый податливый участок схемы блокинг-генератор, для начала правый по схеме вывод резистора R2 присоединяем к участку схемы +5в (кт1). Затем подключаем осциллограф к коллектору VT1 должна наблюдаться генерация, если нет генерации следует поменять местами концы обмотки 3.

Для записи программы в контроллер необходимо

Записать gamma_1.eep в память EEPROM.

Записать gamma_1.hex в память FLASH.

Микроконтроллер настроен на работу внутреннего генератора, настройка фузов показана на рис 5.

Цифровой дозиметр ГАММА_1. Настройка фузов

При необходимости сменить программу необходимо сначала полностью стереть память с кристалла EEPROM и FLASH во избежание ошибок.

Цифровой дозиметр ГАММА_1. Как мотать трансформатор

Цифровой дозиметр ГАММА_1. Детекторная камера

Скачать исходный код и прошивку (100 кБайт)

Автор: Князев И.С. (Knazev33), Knazevis_ [собака] mail.ru, ICQ: 455864760; Публикация: cxem.net

Смотрите другие статьи раздела Дозиметры.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Уровень углерода в океане неравномерен 09.04.2013

Как показали последние исследования, ученые серьезно ошибались насчет количества углерода, которое способен поглотить планктон. Оказывается, в определенных регионах океана это значение почти в 2 раза больше, чем считалось ранее. Таким образом, современную модель поведения углекислоты в мировом океане следует пересмотреть. Согласно масштабному исследованию ученых из Калифорнийского университета в Ирвине, триллионы микроскопических организмов, таких как Prochlorococcus, обитающих в теплых водах океана, поглощают удивительно большое количество углерода.

Исследователи фактически опровергли незыблемый десятилетиями научный принцип, так называемое соотношение Редфилда. Названный в честь знаменитого океанографа Альфреда Редфилда, данный принцип гласит, что планктон и материалы, которые он выделяет, на всех глубинах содержат одинаковое отношение углерода, азота и фосфора (106:16:1). В общем-то это звучит странно даже для начинающего садовода, который отлично знает, что состав почвы отличается на разных глубинах. Новое исследование дало понять, что то же касается и мирового океана.

Авторы исследования обнаружили резко различные соотношения веществ в разных регионах океана, при этом широта оказалась важнее глубины. В частности, ученые обнаружили гораздо более высокий уровень углерода в теплых, богатых пищей регионах океана (195:28:1). В свою очередь, в отличие от экваториальных зон, в приполярных углерода меньше (78:13:1).

"Соотношение Редфилда до сих пор было центральным принципом в биологии и химии океана, - говорит ведущий автор исследования доцент Адам Мартини. - Тем не менее, мы четко видим, что соотношение питательных веществ в планктоне не является постоянным, а значит от соотношения Редфилда следует отказаться".

Таким образом, ученым необходимо пересмотреть современные модели химии океана. Это окажет серьезное влияние на разные сферы современной науки: от моделирования отдельных экосистем до прогнозирования последствий глобального потепления.

Данные для исследования были собраны учеными из Калифорнийского университета в Ирвине в ходе 7 экспедиций в Беринговом море, Северной Атлантике, Карибском море и др. Также использовалось сложнейшее оборудование стоимостью 1 млн долл., которое сортировало клетки на молекулярном уровне. Кроме того, данные сопоставили с результатами других 18 исследований.

Другие интересные новости:

▪ TCA9554 - расширитель цифровых портов для шины I2C

▪ Для диагностики достаточно одной капли крови

▪ Персональная фармацевтика

▪ Комариный укол

▪ Сверхскоростной защищенный карманный накопитель Samsung Portable SSD X5

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта И тут появился изобретатель (ТРИЗ). Подборка статей

▪ статья Безопасная лестница. Советы домашнему мастеру

▪ статья Почему самый распространенный на нашей планете минерал получил имя только в 2014 году? Подробный ответ

▪ статья Женьшень настоящий. Легенды, выращивание, способы применения

▪ статья Телевизор в качестве осциллографа. Энциклопедия радиоэлектроники и электротехники

▪ статья Движущаяся монета. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024