Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Применение малогабаритных помехоподавляющих магнитопроводов из аморфных металлических сплавов. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиолюбителю-конструктору

Комментарии к статье Комментарии к статье

Треть века назад эксперименты по быстрому охлаждению металлических расплавов, которые проводились с целью получения субмикроскопической структуры металла, показали, что в некоторых случаях кристаллическая решетка в металле вообще отсутствует, а расположение атомов характерно для бесструктурного, аморфного тела. Оказалось, что у аморфного металла совсем другие свойства, не сходные с кристаллическим металлом. Он становится в несколько раз прочнее, повышается его стойкость к коррозии, изменяются электромагнитные характеристики и даже одна из самых устойчивых констант - модуль упругости. Аморфные сплавы получили название металлических стекол. Интерес к ним стремительно возрастает. Прежде всего, исследователей заинтересовали ферромагнитные свойства сплавов на основе железа, никеля и кобальта, которые оказались выше, чем у пермаллоев, причем эти свойства более стабильны. Сегодня мы расскажем о некоторых областях применения магнитопроводов, выполненных из аморфных металлических сплавов.

Магнитопроводы из аморфных металлических сплавов навивают из тонких (в среднем 25 мкм) лент (рис. 1). Подбирая материал и режим термообработки, можно получить уникальные свойства, оптимальные для конкретного применения изделий.

Применение малогабаритных помехоподавляющих магнитопроводов из аморфных металлических сплавов

На приведенном фрагменте функциональной схемы преобразователя показаны четыре типа магнитопроводов (см. рекламу фирмы "Мстатор" на с. 33):

1 - для корректоров коэффициента мощности. Благодаря большой индукции насыщения (1,45 Тл), малым потерям и возможности работы при повышенной температуре, применение подобных магнитопроводов позволяет уменьшить габариты и массу устройства;

2 - тороидальные с режимом насыщения для магнитных усилителей (магнитных ключей). Эти магнитопроводы имеют уникальные свойства: высокий коэффициент прямоугольности петли гистерезиса (0,96...0,98), малые потери и небольшая коэрцитивная сила на высокой частоте. Типовое применение магнитных ключей - многоканальные источники питания, в которых обратная связь на ШИМ-регулятор поступает с одного из выходов, а стабилизация напряжения в остальных каналах обеспечивается применением магнитных ключей. Такое построение источников питания устраняет зависимость напряжения в одном из каналов от степени нагруженности других, повышает стабильность и уменьшает пульсации выходного напряжения, позволяет легко реализовать раздельное внешнее управление, раздельную защиту каналов по току с разными порогами. Подобные магнитопроводы применяют и для стабилизации выходного тока, например, в зарядных устройствах. Кроме того, эти изделия позволяют повысить КПД и надежность устройства;

3 - помехоподавляющие. Их часто используют с одновитковой обмоткой: просто одевают на вывод элемента - диода, транзистора. Такие магнитопроводы обеспечивают эффективное подавление радиопомех и снижение высокочастотных пульсаций выходного напряжения;

4 - малогабаритные тороидальные для силовых дросселей (индукторов). Эти магнитопроводы характеризуются большим уровнем подмагничивания постоянным током при сохранении высокой проницаемости. Они имеют высокую индукцию насыщения (1,45 Тл) и малые потери, позволяют уменьшить габариты устройства и обеспечивают работу при более высоком уровне подмагничивания постоянным током, чем при использовании магнитопроводов из традиционных материалов.

Кроме того, магнитопроводы из аморфных металлических сплавов применяют в синфазных фильтрах импульсных источников питания. Здесь используются материалы с узкой петлей гистерезиса, высокой начальной магнитной проницаемостью (до 150000), малыми потерями на высокой частоте. Для получения необходимой индуктивности требуется небольшое число витков, что кроме уменьшения габаритов, обеспечивает малую паразитную емкость обмотки и высокий коэффициент подавления синфазной помехи.

Далее остановимся более детально на применении миниатюрных помехоподавляющих магнитопроводов.

Эти изделия препятствуют быстрым изменениям электрического тока, которые в противном случае могли бы привести к электрическим шумам и помехам. В отличие от других, этот метод устраняет саму причину возникновения помех. Благодаря прямоугольной форме петли гистерезиса, помехоподавляющие магнитопроводы имеют очень большую индуктивность в момент перехода тока через нуль, что эффективно демпфирует любые быстрые изменения тока. После установления номинального тока магнитопровод насыщается, его индуктивность уменьшается и не оказывает влияния на работу устройства. Например, подобные изделия просто и эффективно уменьшают шумы, вызванные обратным током восстановления в полупроводниковых коммутационных элементах в момент выключения.

Одновитковые помехоподавляющие устройства (на основе цилиндрических магнитопроводов) конструктивно оптимизированы для использования с одновитковой обмоткой, которой обычно является вывод компонента. Их одевают на вывод элемента (транзистора, диода) перед монтажом на печатную плату (рис. 2).

Применение малогабаритных помехоподавляющих магнитопроводов из аморфных металлических сплавов

Многовитковые помехоподавляющие устройства ("spike killers" или "убийцы выбросов") представляют собой небольшие магнитопроводы насыщения с обмоткой из нескольких витков.

Преимущество описываемых устройств, по сравнению с другими методами, заключается в более высокой эффективности (вследствие устранения причины помех - быстрых изменений тока), меньших потерях (суммарные потери ниже, чем в обычной RC-цепи, особенно на высокой частоте), экономии площади печатной платы (одеваются непосредственно на выводы полупроводников, не требуя дополнительного места на печатной плате). Этот класс магнитопроводов широко применяют в импульсных источниках питания, преобразователях постоянного напряжения в постоянное, узлах управления электродвигателями, переключательных полупроводниковых устройствах, в малогабаритных синфазных фильтрах. Кроме подавления шумов, помехоподавляющие дроссели используют для защиты полупроводников, поскольку устраняют потенциально опасные выбросы напряжения.

Принцип работы помехоподавляющего магнитопровода поясняет рис. 3.

Применение малогабаритных помехоподавляющих магнитопроводов из аморфных металлических сплавов

Во время протекания постоянного прямого тока (область "I" на рис. 3,а) магнитопровод насыщен и его намагничивание остается почти постоянным (область "Г на рис. 3,б), поэтому дроссель имеет очень низкую индуктивность.

После выключения, когда прямой ток диода уменьшается, магнитопровод еще насыщен и индуктивность дросселя по-прежнему мала (область "II" на рис. 3).

Ток диода продолжает уменьшаться и меняет свое направление (область "III" на рис. 3,а). Период обратного восстановления диода характерен высоким значением di/dt, что и является основной причиной помех. В это время магнитопровод начинает перемагничиваться (область "III" на рис. 3,б), индуктивность дросселя быстро увеличивается, что приводит к уменьшению броска обратного тока диода.

Когда диод закроется, магнитопровод останется практически в размагниченном состоянии (область "IV" на рис. 3).

Как только приходит следующий импульс, диод снова включается, а магнитопровод, намагничиваясь, быстро входит в насыщение (область "V" на рис. 3) и описанный выше процесс повторяется.

На рис. 4 показаны примеры использования помехоподавляющих магнитопроводов (красным цветом выделены помехоподавляющие дроссели, желтым - накопительные дроссели на основе магнитопроводов МД из аморфного сплава с режимом подмагничивания постоянным током): а - импульсный стабилизатор; б - двухтактный преобразователь; в - обратноходовый преобразователь; г - узел управления электродвигателем; д - прямоходовый преобразователь; е - мостовой узел управления электродвигателем.

Применение малогабаритных помехоподавляющих магнитопроводов из аморфных металлических сплавов

На рис. 5 показаны сравнительные осциллограммы, наглядно демонстрирующие преимущества помехоподавляющих устройств из аморфных металлических сплавов на примере прямоходового преобразователя: а, б - пульсации выходного напряжения, частота f=150 кГц, выходное напряжение Uвых=15 В, ток нагрузки IН=10 А: а - амплитуда пульсаций 67 мВ (RC-цепь и ферритовыи магнитопровод), б - амплитуда пульсаций 45 мВ (МП4-2-4.5АП); в, г - напряжение на входе выпрямителя (вверху - напряжение на аноде диода, внизу - ток через диод), f=500 кГц, Uвых=5 В, lH=20 А: в - без применения мер по демпфированию, г - МП4-2-4.5; д, е - напряжение на коммутирующем MOSFET транзисторе, частота 250 кГц: д - максимальное напряжение 715 В (ферритовыи магнитопровод 4-2-4), е - максимальное напряжение 690 В (МП4-2-4.5); ж, з - соответствующие д, е пульсации выходного напряжения преобразователя, f=250 кГц, Uвых=5 В, 1н=15 А: ж - амплитуда пульсаций 140 мВ (ферритовыи магнитопровод 4-2-4), з - амплитуда пульсаций 87 мВ (МП4-2-4.5).

Применение малогабаритных помехоподавляющих магнитопроводов из аморфных металлических сплавов
(нажмите для увеличения)

В табл. 1 приведены общие рекомендации при выборе помехоподавляющих магнитопроводов, применяемых в импульсных источниках. После того, как группа определена, конкретный типономинал выбирают исходя из следующих соотношений.

Применение малогабаритных помехоподавляющих магнитопроводов из аморфных металлических сплавов

Для эффективного подавления фронта обратного тока восстановления диода с помощью одновитковых устройств необходимо выполнение условия 2Фm≥(Ucxtrr), где 2Фm - максимальный (двойной размах) поток в магнитопроводе, Вб; Uc - обратное напряжение на диоде, В; trr - время обратного восстановления диода, с.

В качестве примера рассмотрим разрядный (коммутирующий) диод (рис. 4,д) прямоходового преобразователя с выходным напряжением 12 В. Время обратного восстановления диода - 35 не, скважность импульсов - 0,3 (30 %).

По табл. 1 выбираем цилиндрический помехоподавляющий магнитопровод. Затем вычисляем правую часть выражения:

2Фm≥((12/0,3)х35х10-9)=1,4 мкВб.

Из табл. 2 выбираем наименьший магнитопровод, удовлетворяющий этому условию - МПЗх2х4.5АП.

Применение малогабаритных помехоподавляющих магнитопроводов из аморфных металлических сплавов

Для многовитковых устройств должно выполняться условие

(2ФmxAw)≥(1,5Ucxl0xtrr),

где 2Фm - максимальный магнитный поток в магнитопроводе, Вб; Аw - площадь окна (обмотки) по внутреннему диаметру корпуса магнитопровода, мм2; Uc - напряжение на элементе, В; l0 - ток элемента, А; trr - время обратного восстановления, с.

В качестве примера рассмотрим разрядный (коммутирующий) диод прямоходового преобразователя с выходным напряжением 24 В и током нагрузки 2 А. Время обратного восстановления диода - 60 не, скважность импульсов - 0,3 (30 %).

По табл. 1 выбираем многовитковый дроссель. Затем вычисляем правую часть выражения:

(2ФmxAw≥(1,5х(24/0,3)х2х60х10-9)= =14,4 мкВб·мм2 .

Из табл. 3 выбираем наименьший магнитопровод, удовлетворяющий этому условию - МН080704.5А.

Применение малогабаритных помехоподавляющих магнитопроводов из аморфных металлических сплавов

Диаметр провода (в мм) и число витков обмотки для выбранного магнитопровода вычисляют по следующим соотношениям:

dnp≥(0,5√I0=0,7 мм;

N≥(3Ucxtrr/(2Фm))=(3x(24/0,3)x60x10-9 /(1,96х10-6))=7,35 витка.

Выбираем целое значение N=8 витков.

Окончательный оптимальный выбор помехоподавляющего дросселя производится при практическом тестировании реального устройства.

Ориентировочные рекомендации по применению цилиндрических помехоподавляющих магнитопроводов приведены в табл. 4 (для прямоходовых преобразователей) и в табл. 5 (для обратноходовых преобразователей).

Применение малогабаритных помехоподавляющих магнитопроводов из аморфных металлических сплавов

Автор: Э.Фоченков, г.Боровичи Новгородской обл.

Смотрите другие статьи раздела Радиолюбителю-конструктору.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Оптический кабель Thunderbolt 29.12.2012

Компании Sumitomo Electric, по ее собственным словам, удалось первой в мире получить сертификат Intel на оптические кабели Thunderbolt. Уже начато серийное производство этих кабелей, обеспечивающих подключение на большие расстояния по сравнению с медными кабелями Thunderbolt. Отметим, что первые образцы кабелей были готовы у Sumitomo Electric еще в апреле этого года.

Оптический кабель Thunderbolt является активным. Он обеспечивает подключение двух устройств с интерфейсом Thunderbolt, расстояние между которыми не превышает 30 м. Точнее говоря, предусмотрен выпуск трех моделей, длиной 10, 20 и 30 м. Для сравнения: кабели Thunderbolt с медной средой передачи имеют длину не более 3 м. Внешний диаметр кабелей двух типов совпадает - 4,2 мм. Оптический кабель получился у Sumitomo Electric очень гибким. Он обеспечивает скорость передачи до 10 Гбит/с в каждом из двух каналов, даже будучи завязан узлами, утверждает производитель.

От медных кабелей оптический отличается большей длиной разъема: 38 мм против 28 мм. Более существенным отличием является невозможность подавать по такому кабелю питание, тогда как медный кабель может питать устройства, потребляемая мощность которых не превышает 10 Вт.

Другие интересные новости:

▪ Apple намерена использовать только переработанные металлы

▪ Измерена энергия входа электрона в воду

▪ Генная инженерия превратит людей в суперменов

▪ Полнокадровая фотокамера Hasselblad HV

▪ Тонкий помол для свиньи

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Усилители мощности. Подборка статей

▪ статья Рукой подать. Крылатое выражение

▪ статья Как Хьюлетт и Паккард выбирали название для своей компании? Подробный ответ

▪ статья Артериальное давление и его измерение. Медицинская помощь

▪ статья Самодельная ветросиловая установка. Пружины. Энциклопедия радиоэлектроники и электротехники

▪ статья Передатчик для охоты на лис. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024