Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Бесконтактные емкостные датчики. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиолюбителю-конструктору

Комментарии к статье Комментарии к статье

Емкостные датчики реагируют на самые различные вещества - твердые и жидкие, металлы и диэлектрики. Их используют, например, для бесконтактного контроля заполнения резервуаров жидкостями и сыпучими материалами, позиционирования и счета различных предметов, охраны объектов. В предлагаемой статье рассказано о принципе действия бесконтактных датчиков, приведены схемы, пригодные для практического воплощения и использования.Выпускаемые многими отечественными и зарубежными фирмами бесконтактные датчики [1, 2] действуют по "конденсаторному" принципу, реагируя на вызванное появлением в чувствительной зоне постороннего объекта изменение относительной диэлектрической проницаемости окружающей среды. Типовой датчик с диаметром чувствительной поверхности 60 мм фиксирует на расстоянии 40 мм "стандартную цель" (термин по [3]).

Чувствительный элемент бесконтактного емкостного датчика представляет собой конденсатор с обкладками, развернутыми в одну плоскость, как показано на рис. 1.

Бесконтактные емкостные датчики

В зависимости от наличия или отсутствия постороннего предмета изменяется средняя диэлектрическая проницаемость окружающей обкладки среды и, следовательно, емкость конденсатора. Последний служит частотозадающим элементом автогенератора. Имеющееся в датчике пороговое устройство следит за амплитудой или частотой колебаний, при их изменении приводя в действие исполнительный узел.

Во многих емкостных датчиках частоту генератора выбирают равной нескольким мегагерцам. Генераторы строят на дискретных транзисторах, число которых достигает пяти. Однако достаточно чувствительный к изменению емкости генератор, работающий на частотах в сотни килогерц, можно построить и всего на одном ОУ среднего класса.

За основу взята классическая схема генератора прямоугольных импульсов на ОУ, показанная на рис. 2.

Бесконтактные емкостные датчики

Ее подробное описание и расчет приведены в [4]. Если ОУ DA1 идеален, частота колебаний обратно пропорциональна емкости конденсатора С1 (чувствительного элемента датчика), а их амплитуда неизменна. В действительности с уменьшением емкости и ростом частоты наступает момент, когда из-за свойственной реальному ОУ инерционности условия самовозбуждения генератора перестают выполняться и колебания срываются.

Остается добиться, чтобы генератор работал при наличии в чувствительной зоне постороннего предмета, а при его удалении (что эквивалентно уменьшению емкости конденсатора) - уже нет. Такой режим имеет определенные преимущества перед известными, когда генератор работает непрерывно [5, 6], либо только в отсутствие постороннего предмета [7, 8].

Идея была проверена моделированием генератора с помощью программы ELECTRONIC WORKBENCH. Из библиотеки стандартных элементов программы для модели был выбран ОУ НА2502. Номиналы резисторов составляли: R1 - 330 кОм, R2 - 1 кОм, R3 - 2 кОм. Колебания мягко возникали и срывались при изменении емкости конденсатора С1 от 11 до 12 пФ, и обратно. С большой долей уверенности можно утверждать, что для надежной работы емкостного датчика этого достаточно. В дальнейшем вывод был подтвержден испытанием реальных конструкций.

Чувствительный элемент датчика был изготовлен из односторонне фольгированного изоляционного материала, на котором оставлены два прямоугольных участка фольги размерами 70x50 мм, примыкающие друг к другу короткими сторонами с зазором 2 мм. Емкость образованного таким образом "развернутого конденсатора" - приблизительно 5 пФ. Длина проводов, соединяющих обкладки конденсатора с генератором, должна быть минимальной, не более 50 мм.

Практическая схема генератора на одном из двух ОУ микросхемы КР157УД2 показана на рис. 3.

Бесконтактные емкостные датчики

Так как микросхема питается от одного источника, с помощью резистивного делителя R3R4 на неинвертирующий вход ОУ подано смещение, равное половине напряжения питания. Частотозадающая цепь образована резистором R2 и емкостью чувствительного элемента Е1. Резистор R1 служит для защиты входа ОУ от помех и наводок, способных вывести ОУ из строя.

Следует отметить важную роль конденсатора С1, корректирующего АЧХ ОУ. От емкости этого конденсатора зависит "рабочая точка" генератора на склоне АЧХ. Были проверены два варианта: С1=12 пФ, R5=180 кОм (частота 200 кГц) и С1=6,8 пФ, R5=1 МОм (частота 500 кГц). В обоих случаях, подстраивая резистор R2, удавалось добиться, что генератор возбуждался при приближении к чувствительному элементу постороннего предмета. Настройку желательно производить с помощью длинной отвертки из изоляционного материала.

Во время испытаний датчик "чувствовал" человеческую руку или резервуар с водой на расстоянии в несколько сантиметров. На меньшем расстоянии удавалось обнаружить деревянный брусок, пустую стеклянную банку и даже ученический ластик.

Схема генератора на микросхеме К1407УД1 представлена на рис. 4.

Бесконтактные емкостные датчики

Его свойства приблизительно такие же, как и у рассмотренного выше. Так как примененный ОУ не имеет выводов для подключения цепей коррекции, его быстродействие ухудшено с помощью обратной связи по цепи R3C1. Кроме того, подобно резистору R1 в предыдущем устройстве (см. рис. 3), резистор R3 защищает вход ОУ от наводок. Рабочая частота генератора - приблизительно 100 кГц.

На рис. 5 изображена схема бесконтактного датчика на микросхеме КР157ДА1 [9].

Бесконтактные емкостные датчики

В отличие от ранее рассмотренных (см. рис. 3 и 4), в генераторе датчика не потребовалась дополнительная ОС, так как собственная полоса пропускания ОУ DA1.1 достаточно узка. Однако, чтобы добиться надежной работы, пришлось ввести цепь R6C1. Резистор R1 - защитный.

Частота колебаний генератора на ОУ DA1.1 - 20 кГц при R5=10 кОм и 80 кГц при R5=100 кОм. В отсутствие объекта в чувствительной зоне генератор не работает, светодиод HL1 не светится. Последнее делает устройство более экономичным по сравнению, например, с описанным в [8]. Со второго выхода детектора DA1.2, нагрузкой которого служит цепь R7C2, сигнал поступает на вход порогового устройства - ОУ DA1.3. На его выходе (выводе 7 микросхемы DA1) при срабатывании датчика низкий уровень напряжения сменяется высоким.

Генераторы емкостных датчиков, в том числе рассматриваемого, в отсутствие внешнего объекта иногда выдают кратковременные "вспышки" колебаний, следующие с частотой 100 Гц. Вероятно, это результат воздействия сетевых наводок. Скважность "вспышек" достаточно высока, и инерционная цепь R7C2 ослабляет их, не позволяя достичь уровня срабатывания DA1.3.

Как показала проверка, указанные ранее размеры чувствительного элемента Е1 можно уменьшить. Например, устройство на микросхеме К1407УД1 (см. рис. 4), действовало и при размерах обкладок 30x6 мм, причем для сохранения неизменной постоянной времени цепи обратной связи номинал переменного резистора R5 пришлось увеличить до 560 кОм. Чувствительность датчика осталась вполне удовлетворительной.

Размеры чувствительной зоны удалось увеличить, раздвинув обкладки конденсатора в стороны или вовсе удалив ту из них, которая соединена с общим проводом. В последнем случае роль удаленной обкладки переходит к самому общему проводу и соединенным с ним элементам. После соответствующей настройки подстроечным резистором R5 генератор возбуждался при приближении к оставшейся обкладке руки на расстояние 100 мм или деревянного бруска - на 30 мм. Однако амплитуда "вспышек" частотой 100 Гц заметно возросла.

Литература

  1. TURCK Proximity Sensors. Каталог бесконтактных датчиков (выключателей) фирмы TURCK (Германия).
  2. BALLUFF Sensor Technik. Каталог бесконтактных датчиков (выключателей) фирмы BALLUFF (Германия).
  3. ГОСТ Р 50030.5.2-99 (МЭК 60947-5-2) Аппаратура распределения и управления низковольтная. Часть 5.2. Аппараты и коммутационные элементы цепей управления. Бесконтактные датчики.
  4. Фролкин В., Попов Л. Импульсные устройства. - М.: Советское радио, 1980.
  5. Нечаев И. Емкостное реле. - Радио, 1988, № 1,с. 33.
  6. Нечаев И. Емкостное реле. - Радио, 1992, № 9, с. 48.
  7. Устройство сигнализации при приближении к объекту. - Радио, 1999, № 5, с. 40.
  8. Москвин А. Сторожевое устройство с емкостным датчиком. - Радио, 2001, № 8, с. 35, 36.
  9. Атаев Д., Болотников В. Аналоговые интегральные схемы для бытовой аппаратуры. Справочник. - М.: ПКФ "Печатное дело", 1992.

Автор: А.Москвин, г.Екатеринбург

Смотрите другие статьи раздела Радиолюбителю-конструктору.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Пленка, повышающая ударопрочность дисплея смартфона 11.06.2014

Ученые из Университета Акрон в Огайо предложили недорогое решение проблемы с защитой дисплеев от удара.

И хотя большинство применяемых в современных смартфонах стекол обладают высоким сопротивлением к царапинам и полностью удовлетворяют этим своих владельцев, падение даже с небольшой высоты может стать для экрана фатальным. Для того чтобы уберечь мобильное устройство от небрежного обращения или других случайных инцидентов, инженеры из Акрона разработали технологичную пленку для сенсорных дисплеев, выполненную на основе прозрачных электродов, которые помещены на тонкую полимерную поверхность.

Что касается прочности выбранного для пленки покрытия, способного сделать дисплей вашего смартфона максимально стойким к повреждениям, наделив его ударопрочными свойствами, то прозрачная поверхность выдерживает более 1000 сгибов без нарушения целостности нанесенного на нее слоя. Кроме того, она весьма устойчива к трению и другим механическим воздействиям.

Успешность реализации представленного решения зависит от многих факторов, но прежде всего - от себестоимости изделия. По заявлению представителей Университета, цена на пленку, с учетом ее производства в рулонах уже в массовом порядке, должна быть весьма низкой. По крайней мере, представленная технология обойдется явно дешевле, нежели стоимость производства современных экранов.

Другие интересные новости:

▪ Ноутбук управляется с помощью глаз

▪ Ноутбук HP EliteBook Folio

▪ Робот на подножном корме

▪ Защищенный ноутбук Panasonic Toughbook 55

▪ Самая большая и самая маленькая змея

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Технологии радиолюбителя. Подборка статей

▪ статья Организация защиты личного состава формирований. Специальная обработка. Основы безопасной жизнедеятельности

▪ статья Что такое криптография? Подробный ответ

▪ статья Инспектор ректората. Должностная инструкция

▪ статья Малогабаритный двухлучевой осциллограф-мультиметр. Энциклопедия радиоэлектроники и электротехники

▪ статья Сварочный трансформатор своими руками. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024