Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Симметрирующие ШПТ и дроссели на ферритовых трубках. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиолюбителю-конструктору

Комментарии к статье Комментарии к статье

Трансформаторы на ферритовых трубках выполняют сразу несколько функций: трансформируют сопротивление, симметрируют токи в плечах антенны и подавляют ток на внешней поверхности оплетки коаксиального фидера. Наилучшим отечественным ферритовым материалом для широкополосных трансформаторов (ШПТ) является феррит марки 600НН, но из него не изготавливали трубчатых магнитопроводов...

Сейчас в продаже появились ферритовые трубки зарубежных фирм с хорошими характеристиками, в частности, FRR-4,5 и FRR-9,5 (рис. 1), имеющие размеры dxDxL 4,5x14x27 и 9,5x17,5x35 мм соответственно. Последние трубки использовались в качестве помехоподавляющих дросселей на кабелях, соединяющих системные блоки компьютеров с мониторами на электроннолучевых трубках. Сейчас их массово заменяют на матричные мониторы, а старые выбрасывают вместе с соединительными кабелями.

Симметрирующие ШПТ и дроссели на ферритовых трубках
Рис. 1. Ферритовые трубки

Четыре ферритовые трубки, сложенные рядом по две, образуют эквивалент "бинокля", на котором можно разместить обмотки трансформаторов, перекрывающих все КВ-диапазоны от 160 до 10 метров. Трубки имеют скругленные грани, что исключает повреждения изоляции проводов обмоток. Их удобно скрепить вместе, обмотав широким скотчем.

Из различных схем широкополосных трансформаторов я использовал простейшую, с раздельными обмотками, витки которых имеют дополнительную связь за счет плотной скрутки проводников между собой. Это позволяет уменьшить индуктивность рассеяния и за счет этого повысить верхнюю границу рабочей полосы частот. Одним витком будем считать провод, продетый через отверстия обеих трубок "бинокля", а "половиной витка" - провод, продетый через отверстие одной трубки "бинокля". В таблице сведены варианты трансформаторов, выполнимых на этих трубках. Здесь N1 - число витков первичной обмотки; N2 - число витков вторичной обмотки; КU - коэффициент трансформации напряжений; KR - коэффициент трансформации сопротивлений; М - соотношение сопротивлений при источнике с выходным сопротивлением 50 Ом.

Таблица
N1 N2 КU KR М
1 1 1:1 1:1 50:50
1 1,5 1:1,5 1:2,25 50:112,5
1 2 1:2 1:4 50:200
1 2,5 1:2,5 1:6,25 50:312,5
1 3 1:3 1:9 50:450
1 3,5 1:3,5 1:12,5 50:625
2 1 1:0,5 1:0,25 50:12,5
2 1,5 1:0,75 1:0,56 50:28
2 2 1:1 1:1 50:50
2 2,5 1:1,25 1:1,56 50:78
2 3 1:1,5 1:2,25 50:112,5
2 3,5 1:1,75 1:3 50:150
2 4 1:2 1:4 50:200
2 4,5 1:2,25 1:5 50:250
2 5 1:2,5 1:6,25 50:312,5
2 5,5 1:2,75 1:7,56 50:378
2 6 1:3 1:9 50:450
2 6,5 1:3,25 1:10,56 50:528
2 7 1:3,5 1:12,5 50:625

Как видим, получается весьма широкий выбор соотношения сопротивлений. Трансформатор с коэффициентом 1:1, подобно дросселю, симметрирует токи в плечах антенны и подавляет ток на внешней поверхности оплетки кабеля питания. Прочие трансформаторы в дополнение к этому еще и трансформируют сопротивления. Чем руководствоваться при выборе числа витков? При прочих равных условиях трансформаторы с одновитковой первичной обмоткой имеют примерно в четыре раза более высокую нижнюю границу полосы пропускания по сравнению с двухвитковой, но и верхняя частота полосы пропускания у них значительно выше. Поэтому для трансформаторов, используемых от диапазонов 160 и 80 метров, лучше использовать двухвитковые варианты, а от 40 метров и выше - одновитковые. Использовать целочисленные значения числа витков предпочтительно, если желательно сохранить симметрию и разнести выводы обмоток на противоположные стороны "бинокля".

Чем выше коэффициент трансформации, тем труднее получить широкую полосу пропускания, поскольку возрастает индуктивность рассеяния обмоток. Компенсировать ее можно путем включения конденсатора параллельно первичной обмотке, подбирая его емкость по минимуму КСВ на верхней рабочей частоте.

Для обмоток я обычно использую провод МГТФ-0,5 или более тонкий, если нужное число витков не умещается в отверстии. Заранее рассчитываю нужную длину провода и отрезаю ее с некоторым запасом. Провод первичной и вторичной обмоток плотно скручиваю до намотки на магнитопровод. Если отверстие феррита не заполнено обмотками, лучше продевать витки в подходящие по диаметру термоусаживаемые трубки, отрезанные по длине "бинокля", которые после завершения намотки усаживаются с помощью фена. Плотное прижатие витков обмоток друг к другу расширяет полосу трансформатора и часто позволяет исключить компенсирующий конденсатор.

Следует иметь в виду, что повышающий трансформатор может работать и как понижающий, с тем же коэффициентом трансформации, если его "перевернуть". Обмотки, предназначенные для подключения к низкоомным сопротивлениям, нужно выполнять из экранной "плетенки" или нескольких проводов, соединенных параллельно.

Проверку трансформатора можно проводить измерителем КСВ, нагрузив его выход на безындукционный резистор соответствующего номинала. Границы полосы определяются по допустимому уровню КСВ (обычно 1,1). Измерить потери, вносимые трансформатором, можно путем измерения ослабления, вносимого двумя одинаковыми трансформаторами, включенными последовательно так, чтобы вход и выход устройства имели сопротивление 50 Ом. Результат не забудьте поделить на два.

Несколько труднее оценить мощностные характеристики трансформатора. Для этого потребуются усилитель и эквивалент нагрузки, способный выдерживать необходимую мощность. Используется та же схема с двумя трансформаторами. Измерение проводится на нижней рабочей частоте. Постепенно поднимая мощность CW и поддерживая ее примерно минуту, определяем рукой температуру феррита. Уровень, при котором феррит за минуту начинает чуть заметно нагреваться, можно считать максимально допустимым для данного трансформатора. Дело в том, что при работе не на эквивалент нагрузки, а на реальную антенну, имеющую некоторую реактивную составляющую входного импеданса, трансформатор передает еще и реактивную мощность, которая может насыщать магнитопровод и вызывать дополнительный нагрев.

На рис. 2 показана практическая конструкция трансформатора, имеющего два выхода: на 200 Ом и 300 Ом.

Симметрирующие ШПТ и дроссели на ферритовых трубках
Рис. 2. Практическая конструкция трансформатора, имеющего два выхода

Трансформаторы можно разместить на подходящих размеров плате, защитив ее от осадков любым практическим способом.

Автор: Владислав Щербаков (RU3ARJ)

Смотрите другие статьи раздела Радиолюбителю-конструктору.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Наноматериал из молекул, закрученных одновременно в противоположные стороны 21.09.2019

Многие биомолекулы обладают таким свойством как хиральность: две молекулы с абсолютно одинаковой структурой являются зеркальным отражением друг друга. Самый яркий пример хиральности - это наши руки: левая отзеркаливает правую и наоборот. Другой пример, который мы встречаем в природе, - спираль ракушки, которая может быть закручена в правую или в левую сторону. "Зеркальные" молекулы с одинаковой структурой могут обладать совершенно разными свойствами. Условно, молекула, закрученная в одну сторону, пахнет лимонами, а когда вращается в другом направлении, - апельсинами.

Обнаружение этих искажений особенно важно в некоторых отраслях промышленности, таких как фармацевтика, парфюмерия, производство пищевых добавок и пестицидов. Недавно был разработан новый класс наноматериалов - плазмонные наноматериалы, - которые могут помочь различить хиральность молекул. Эти наноматериалы при воздействии света усиливают хиральные свойства молекул. Обычно они состоят из крошечных скрученных металлических "проволок", которые сами являются хиральными. Тем не менее, исследователи столкнулись со сложностью: стало очень трудно отличить поворот самого наноматериала от завихрения молекул, свойства которых которые необходимо изучить.

Чтобы решить эту проблему, команда с физического факультета Университета Бата создала наноматериал, который закручивается одновременно в одну сторону и в другую. Этот наноматериал имеет одинаковое количество молекул, закрученных в противоположные стороны, - это означает, что они компенсируют друг друга. Поэтому при взаимодействии со лазерными лучами этот материал остается в обычном состоянии, не проявляя свойств хиральности.

Команда использовала математический анализ свойств симметрии материала и обнаружила несколько особых случаев, которые могут выявить "скрытый" поворот и позволить обнаружить хиральность в молекулах с большой точностью.

Другие интересные новости:

▪ MAX17061 - драйверы 8-строчных белых светодиодов

▪ Микрокомпьютер EPICT EPP-100 с пикопроектором

▪ Заключенным нужны витамины

▪ Беспроводной процессор Wavecom

▪ Полицейская робомашина от Ford

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Детекторы напряженности поля. Подборка статей

▪ статья Борьба с радиопомехами. Советы моделисту

▪ статья Сколько времени нужно дельфину, чтобы обновить верхний слой кожи? Подробный ответ

▪ статья Инспектор военно-учетного стола администрации города. Должностная инструкция

▪ статья Атмосфера и ее движение. Энциклопедия радиоэлектроники и электротехники

▪ статья Об информационных знаках на линиях электропередачи. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024