Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Высокодобротный режекторный фильтр на транзисторах. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Компьютеры

Комментарии к статье Комментарии к статье

В статье рассмотрен простой высокодобротный узкополосный режекторный фильтр на транзисторах, который отлично работает в частотной полосе до 1 МГц и вполне удовлетворительно до 10 МГц. Выведены простые расчетные формулы для синтеза фильтра при использовании в качестве исходных величин частоты режекции и полосы пропускания. Для расчетов использован математический САПР Maple c пакетом расширений MathSpice [2] и электронный САПР OrCAD [3].

Аналитические задачи в ручную решаются тяжело. Применение MSpice здесь хороший помощник, резко сдвигающий границу сложности решаемых задач. Он делает доступными для радиолюбителей те задачи, которые ранее считались академическими. Пакет расширений Maple под названием MаthSpice (MSpice) [2] предназначен для аналитического решения электронных цепей и функциональных схем, но может быть использован как инструмент создания Spice-моделей сигналов и электронных приборов для различных симуляторов. Подробнее о MSpice можно узнать прочитав стью "MathSpice - аналитический движок для OrCAD и MicroCAP", Журнал СОВРЕМЕННАЯ ЭЛЕКТРОНИКА, СТА-ПРЕСС, №5, №6, №7, №9, №10, №11, №12 2009 год.

 В некоторых устройствах, в которых мы привыкли видеть ОУ, вполне можно обойтись транзисторами. Преимущества использования ОУ для усиления сигналов постоянного тока неоспоримы. Но на переменном токе преимущества ОУ не так серьезны, как у одиночного транзистора. ОУ с частотой единичного усиления более 10 МГц стоит дорого, в то время, как транзистор с частотой единичного усиления до (100...1000) МГц стоит копейки.

Аналитические расчеты транзисторных устройств несколько сложнее из-за более сложной схемы замещения идеализированного транзистора, по сравнению с идеализированным ОУ. Однако в настоящее время эту проблему облегчает доступность компьютерных вычислений [1], [2].

Очевидно, что транзистор имеет гораздо меньшее число нулей и полюсов, и предельно большое произведение усиления на полосу. Современные транзисторы имеют большой коэффициент усиления по постоянному току h21= 300..1000. Во многих случаях этого достаточно.

В качестве узкополосных режекторных фильтров используются резисторно-конденсаторные двойные Т-образные мостовые фильтры (рис. 1). Их основное преимущество заключается в возможности глубокого подавления отдельных частотных компонентов.

В частотной области, много ниже частоты единичного усиления большинством паразитных параметров транзисторов можно пренебрегать. По этому для расчетов использовалась простейшая схема замещения транзистора, показанная на рис. 2. Она построена на базе источника тока (I1) управляемого напряжением. Ее удобно использовать при расчете цепей методом узловых потенциалов.

Высокодобротный режекторный фильтр на транзисторах
Рис. 1. Схема узкополосного режекторного фильтра на частоту 6,5 МГц

Составим уравнения Кирхгофа для схемы фильтра и решим ее.

restart: with(MSpice): Devices:=[Oдинаковые,[BJT,DC1,2]]:

ESolve(Q,`BJT-PSpiceFiles/SCHEMATIC1/SCHEMATIC1.net`):

Высокодобротный режекторный фильтр на транзисторах

`DC1 модель BJT транзистора`

`Cистема Кирхгофа-Лапласа`

-V6/R7+(V4-V6)/`Rэб`-(V6-VOUT)/R6 = 0

(V4-V1)/R3+(V2-V1)*s*C2-(V1-`Vвх`)*s*C1 = 0

(`Vвх`-V3)/R1-(V3-V2)/R2-(V3-V4)*s*C3 = 0

(VOUT-V5)/`Rэб`-(V5-VB1)/R5-(V5-V2)*s*C4 = 0

(V5-V2)*s*C4+(V3-V2)/R2-(V2-V1)*s*C2 = 0

(V6-VOUT)/R6+(V5-VOUT)*beta/`Rэб`-(VOUT-V5)/`Rэб` = 0

-V4/R4+(V3-V4)*s*C3-(V4-V1)/R3+(V6-V4)*beta/`Rэб`-(V4-V6)/`Rэб` = 0

Решения

{V2, V5, V6, V1, V3, VOUT, V4}

>MSpice v8.43: pspicelib.narod.ru

>Заданы узлы: {VINP, V12V} Источники: [Vвх, VB1, Jэ]

>Решения V_NET: [V2, V5, V6, V1, V3, VOUT, V4]

>J_NET: [Je, JVвх, JRэб, JVB1, JR5, JC4, JR4, JR1, JC1, JR6, JR2, JR7, JR3, JC2, JC3, JFт, JJэ, Jk, JT]

Найдем передаточную функцию фильтра. Для упрощения формул учтем, что для фильтра с мостом Вина должны выполняться следующие соотношения:

C1:=C: C2:=C: C3:=2*C: R1:=R: R2:=R: R3:=R/2:

VB1:=0: # при линейных моделях ПП

H:=simplify(VOUT/Vвх);


(нажмите для увеличения)

С такой формулой работать трудно!!! Тогда предположим, что beta= oo, C4=oo, R5=oo . Конечно, считать, что транзистор имеет бесконечной усиление, несколько грубовато, но для схемы эмитерного повторителя вполне уместно. Это позволяет получить простые формулы для предварительного расчета. Точные формулы с помощью Maple получить можно, но они будут очень сложными для оценки параметров фильтра (формулы займут несколько страниц). При настройке параметры схемы (добротность) легко скорректировать подбором резистора R6. Выполнив предельный переход, получим более простое выражение для операторного коэффициена передачи (1), более пригодного для анализа.

beta:=x: C4:=x: R5:=x:

H:=collect(limit(H,x=infinity),s): 'H'=%, ` (1)`;

H = ((C^2*R^2*R6+C^2*R^2*R7)*s^2+R6+R7)/((C^2*R^2*R6+C^2*R^2*R7)*s^2+4*s*C*R*R6+R6+R7), ` (1)`

Теперь найдем коэффициент передачи в частотной области, K=K(f), выполнив подстановку s=I*2*Pi*f .

Здесь I - мнимая единица, f - частота [Гц].

K:=simplify(subs(s=I*2*Pi*f,H)): 'K(f)'=%, ` (2)`;

K(f) = (4*Pi^2*f^2*C^2*R^2*R6+4*Pi^2*f^2*C^2*R^2*R7-R6-R7)/(4*Pi^2*f^2*C^2*R^2*R6+4*Pi^2*f^2*C^2*R^2*R7-8*I*Pi*f*C*R*R6-R6-R7), ` (2)`

Найдем частоту режекции (3).

Fp=I*solve(diff(K,f)=0,f)[2]: print(%,` (3)`);

Fp = 1/(2*Pi*C*R), ` (3)`

Частоту режекции удобно подстраивать выбором резистора R=R1=R2=2*R3.

R:=solve(%,R): print('R'=R,` (4)`);

R = 1/(2*Fp*Pi*C), ` (4)`

Полоса режекции по уровню 3 дБ

F_3dB:=solve(evalc(abs(K))=subs(f=0,K)/sqrt(2),f):

П:=simplify(F_3dB[4]-F_3dB[2]):

print('П'=П,` (5)`);

`П` = -4*R6*Fp/(R6+R7), ` (5)`

Добротность определяется как Q=Fp/П, отсюда

Q:=Fp/П: 'Q'=Q,` (6)`;

Q = -1/4/R6*(R6+R7), ` (6)`

Выразим передаточную функцию через характерестические параметры фильтра, выполнив подстановки R7=4*Qp*R6-R6, C=1/(2*Pi*R*Fp).

Получается очень удобная формула (7), позволяющая получить требуемую режекторную передаточную функцию по Лапласу, ни чего не зная об устройстве фильтра. Здесь Hp(s) - режекторная операторная передаточная функция, Fp - частота режекции, Qp - добротность режектора.

Hp:=simplify(subs(R7=4*Qp*R6-R6,C=1/(2*Pi*R*Fp),H)): 'Hp(s)'=Hp;

Hp(s) = Qp*(s^2+4*Fp^2*Pi^2)/(Qp*s^2+2*s*Fp*Pi+4*Qp*Fp^2*Pi^2)

Теперь найдем модуль режекторной функции в частотной области (8).

abs(Kp(f)) = simplify(expand(AVM(Hp,f)),'symbolic'), ` (8)`:

abs(Kp(f)) = Qp*(f^2-Fp^2)/collect(Qp^2*f^4-2*Qp^2*f^2*Fp^2+Qp^2*Fp^4+Fp^2*f^2,f)^(1/2), ` (8)`:

abs(Kp(f)) = Qp*(f^2-Fp^2)/(Qp^2*f^4+collect(-2*Qp^2*Fp^2+Fp^2,Fp)*f^2+Qp^2*Fp^4)^(1/2), ` (8)`;

Kp:=Qp*(f^2-Fp^2)/collect(Qp^2*f^4-2*Qp^2*f^2*Fp^2+Qp^2*Fp^4+Fp^2*f^2,f)^(1/2):

abs(Kp(f)) = Qp*(f^2-Fp^2)/(Qp^2*f^4+(-2*Qp^2+1)*Fp^2*f^2+Qp^2*Fp^4)^(1/2), ` (8)`

 Мы получили очень удобную формулу (8) для синтеза режекторной передаточной функции через характеристические параметры фильтра. Уе можно использовать для цифровых прототипов, при программировании фильтров на микроконтроллерах.

Пример расчета

Пусть нам требуется фильтр, обеспечивающий режекцию спектра звукового сигнала телевизионного вещания с центральной частотой Fp=6,5 МГц в полосе П=1МГц. Выберем С=51 пФ и, последовательно пользуясь формулами (4) и (6), рассчитаем остальные компоненты.

Fp:=6.5e6: П:=1e6: C := 51e-12;

C := .51e-10

Digits:=5: Q:='Fp/П'=Fp/П; Q:=Fp/П:

Q := Fp/`П` = 6.5000

R:='1/(2*Pi*Fp*C)'=evalf(1/(2*Pi*Fp*C)); R:=rhs(%):

R := 1/(2*Fp*Pi*C) = 480.14

Известно, что усилительные свойства транзистора зависить от тока эмитера.

В схеме эмитерного повторителя величина эмитерного резистора 1 кОм, обеспечит рабочий ток транзитора 6 мА при напряжении питания 12В, что достаточно для сохранения высокого усиления транзистора на высоких частотах.

Выберем R6+R7=1 кОм, тогда R6=(R6+R7)/4/Q=1K/4/Q, а R7=1K-R6.

R6:=1000.0/Q/4: print('R6'=R6); R7:=1000-R6: print('R7'=R7);

R6 = 38.462

R7 = 961.54

Построим график АЧХ модуля частотного коэффициента передачи нашего режекторного фильтра.

Для этого воспользуемся выражением (8) для модуля передаточной функции, подставив в него рассчитанные величины номиналов компонентов. Эти же величины, округленные до целого, указаны на схеме фильтра (рис. 1).

Values(AC,PRN,[]);Digits:=5:

Qp:= '1/4/R6*(R6+R7)'=evalf(1/4/R6*(R6+R7)); Qp:=rhs(%):

П:='4*R6*Fp/(R7+R6)'=evalf(4*R6*Fp/(R7+R6))*Unit([Hz]); П:=evalf(4*R6*Fp/(R7+R6)):

Fp:= '1/(2*Pi*C*R)'=evalf(1/(2*Pi*C*R))*Unit([Hz]); Fp:=evalf(1/(2*Pi*C*R)):

K:=simplify(expand(AVM(H,f))): print('abs(Kp(f))'=Kp); Digits:=10:

HSF([H],f=1e6..10e6,"3) semi[abs(Kp(f))]$500 режекторного фильтра |Kp(f)| ");

Qp := 1/4/R6*(R6+R7) = 6.5789

`П` := 4*R6*Fp/(R6+R7) = .98800e6*Unit([Hz])

Fp := 1/(2*Pi*C*R) = .64996e7*Unit([Hz])

abs(Kp(f)) = 6.5789*(f^2-.42245e14)/(43.282*f^4-.36146e16*f^2+.77241e29)^(1/2)

Высокодобротный режекторный фильтр на транзисторах
(нажмите для увеличения)

Скачать: BJT Filter 6.5MHz

Литература

  1. Петраков О. М. . Аналитические расчеты в электронике. Журнал СХЕМОТЕХНИКА №7, 2006г.
  2. Петраков О. М. Цикл статей "MathSpice - аналитический движок для OrCAD и MicroCAP", Журнал СОВРЕМЕННАЯ ЭЛЕКТРОНИКА, СТА-ПРЕСС, №5, №6, №7, №9, №10 2009 год. .
  3. Разевиг В. Д. Система проектирования OrCAD 9.2. СОЛОН. Москва 2001г.
  4. Ефимов И. П. Проектирование электронных фильтров: Методические указания по курсовому проектированию для студентов, обучающихся по направлению 5515.
  5. Мошиц Г., Хорн П. Проектирование активных фильтров: Пер. с англ. Мир, 1984.- 320 с, ил.
  6. Волович Г. И. Аналоговые и цифровые устройства. 2005г.
  7. pspicelib.narod.ru Электронный САПР.
  8. pspice.narod.ru Автоматизация аналитических расчетов.

Автор: Олег Петраков, pspicelib@narod.ru; Публикация: cxem.net

Смотрите другие статьи раздела Компьютеры.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Суперпозиция электронного состояния изменила свойства тормозного излучения 28.03.2021

Физики рассмотрели влияние квантовой интерференции на спектральные и пространственные свойства тормозного излучения при рассеянии электронов на атомах и наноондуляторах. Их расчеты показали, что придание состояниям налетающих электронов суперпозиционной формы способно влиять на направленность и монохроматичность тормозного излучения.

Квантовая электродинамика (КЭД) - это наиболее успешный и точный раздел квантовой теории поля. Он описывает электромагнитное взаимодействие во всех его проявлениях и процессах, участниками которых являются в основном электроны, позитроны и фотоны.

Большинство КЭД-эффектов находят свое подтверждение в экспериментах по рассеянию частиц, будь то спектроскопия атомов или упругие столкновения. Начальные и конечные частицы при этом принято описывать состояниями с определенным импульсом, потому что, согласно квантовой механике, частица, которая достаточно долго летит без взаимодействия (например, в трубе спектрографа или в ускорителе), со временем стремится к такому состоянию. Это нашло свое отражение в том, что состояния с определенным импульсом лежат в основе вычислений, проводимых в КЭД.

Вместе с тем квантовая механика допускает состояния суперпозиции, в которых импульс частицы может быть неопределенным. Можно было бы ожидать, что суперпозиция состояний начальных частиц приведет к суперпозиции состояний конечных частиц и к соответствующим эффектам квантовой интерференции, однако такого никогда не наблюдалось в эксперименте. Причина этого в том, что интерференционные члены в сечении рассеяния зануляются из-за законов сохранения энергии и импульса.

Физики из Израиля, Сингапура и США при участии Томаса Кристенсена (Thomas Christensen) показали, что можно найти такой диапазон суперпозиционных состояний, при которых интерференционные члены останутся ненулевыми из-за одинакового баланса энергий и импульсов, и это повлияет на результат всего КЭД-процесса. Чтобы проверить свои догадки с помощью вычислений, они рассмотрели процесс тормозного излучения при рассеянии электрона на нейтральном атоме углерода и на наноондуляторе.

Другие интересные новости:

▪ Беспроводной PIR-датчик 868 МГц на новом радио CC1310

▪ Автомобильные шины загрязняют мировой океан микропластиком

▪ Удаление царапин с автомобиля солнечным светом

▪ Генерация электроэнергии из движущихся поездов

▪ Уличная точка доступа Zyxel 802.11ax (Wi-Fi 6)

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электропитание. Подборка статей

▪ статья Лучших дней воспоминания. Крылатое выражение

▪ статья Что значит Гран-При? Подробный ответ

▪ статья Рогатый огурец. Легенды, выращивание, способы применения

▪ статья Правила устройства электроустановок (ПУЭ). Справочник

▪ статья Угадывание слова из книги. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024