www.diagram.com.ua
www.diagram.com.ua
Русский: Русская версия English: English version
Translate it!
Поиск по сайту

+ Поиск по журналам
+ Поиск по статьям сайта
+ Поиск по схемам СССР
+ Поиск по Библиотеке

Бесплатная техническая библиотека:
Все статьи А-Я
Энциклопедия радиоэлектроники и электротехники
Новости науки и техники
Журналы, книги, сборники
Архив статей и поиск
Схемы, сервис-мануалы
Электронные справочники
Инструкции по эксплуатации
Голосования
Ваши истории из жизни
На досуге
Отзывы о сайте

Энциклопедия радиоэлектроники и электротехники бесплатно:
Автомобиль
Автомобильные электронные устройства
Аккумуляторы, зарядные устройства
Акустические системы
Альтернативные источники энергии
Антенны
Антенны КВ
Антенны телевизионные
Антенны УКВ
Антенные усилители
Аудио и видеонаблюдение
Аудиотехника
Блоки питания
Бытовая электроника
Бытовые электроприборы
Видеотехника
ВЧ усилители мощности
Галогенные лампы
Генераторы, гетеродины
Гирлянды
Гражданская радиосвязь
Детекторы напряженности поля
Дозиметры
Дом, приусадебное хозяйство, хобби
Зажигание автомобиля
Заземление и зануление
Зарядные устройства, аккумуляторы, батарейки
Защита электроаппаратуры
Звонки и аудио-имитаторы
Измерения, настройка, согласование антенн
Измерительная техника
Индикаторы, датчики, детекторы
Инструмент электрика
Инфракрасная техника
Кварцевые фильтры
Компьютерные интерфейсы
Компьютерные устройства
Компьютерный модинг
Компьютеры
Личная безопасность
Люминесцентные лампы
Медицина
Металлоискатели
Микроконтроллеры
Микрофоны, радиомикрофоны
Мобильная связь
Модернизация радиостанций
Модуляторы
Молниезащита
Музыканту
Начинающему радиолюбителю
Ограничители сигнала, компрессоры
Освещение
Освещение. Схемы управления
Охрана и безопасность
Охрана и сигнализация автомобиля
Охрана и сигнализация через мобильную связь
Охранные устройства и сигнализация объектов
Переговорные устройства
Передатчики
Передача данных
Предварительные усилители
Преобразователи напряжения, выпрямители, инверторы
Применение микросхем
Пускорегулирующие аппараты люминесцентных ламп
Работа с CAD-программами
Радиолюбительские расчеты
Радиолюбителю-конструктору
Радиоприем
Радиостанции портативные
Радиостанции, трансиверы
Радиоуправление
Разная бытовая электроника
Разные компьютерные устройства
Разные узлы радиолюбительской техники
Разные устройства гражданской радиосвязи
Разные электронные устройства
Разные электроустройства
Регуляторы мощности, термометры, термостабилизаторы
Регуляторы тембра, громкости
Регуляторы тока, напряжения, мощности
Сварочное оборудование
Светодиоды
Синтезаторы частоты
Смесители, преобразователи частоты
Спидометры и тахометры
Справочник электрика
Справочные материалы
Стабилизаторы напряжения
Студенту на заметку
Телевидение
Телефония
Теория антенн
Техника QRP
Технологии радиолюбителя
Технология антенн
Трансвертеры
Узлы радиолюбительской техники
Усилители мощности
Усилители мощности автомобильные
Усилители мощности ламповые
Усилители мощности транзисторные
Усилители низкой частоты
Устройства защитного отключения
Фильтры и согласующие устройства
Цветомузыкальные установки
Цифровая техника
Часы, таймеры, реле, коммутаторы нагрузки
Электрику
Электрику. ПТЭ
Электрику. ПУЭ
Электрические схемы автомобилей
Электрические счетчики
Электричество для начинающих
Электробезопасность, пожаробезопасность
Электродвигатели
Электромонтажные работы
Электронный впрыск топлива
Электропитание
Электроснабжение
Электротехнические материалы

Статьи бесплатно:
Батарейки и аккумуляторы
Большая энциклопедия для детей и взрослых
Биографии великих ученых
Важнейшие научные открытия
Детская научная лаборатория
Должностные инструкции
Домашняя мастерская
Жизнь замечательных физиков
Заводские технологии на дому - простые рецепты
Загадки, ребусы, вопросы с подвохом
Инструменты и механизмы для сельского хозяйства
Искусство аудио
Искусство видео
История техники, технологии, предметов вокруг нас
И тут появился изобретатель
Конспекты лекций, шпаргалки
Крылатые слова, фразеологизмы
Личный транспорт: наземный, водный, воздушный
Любителям путешествовать - советы туристу
Мобильные телефоны
Моделирование
Опыты по физике
Опыты по химии
Нормативная документация по охране труда
Основы безопасной жизнедеятельности (ОБЖД)
Основы первой медицинской помощи (ОПМП)
Охрана труда
Параметры, аналоги, маркировка радиодеталей
Радио - начинающим
Секреты ремонта
Советы радиолюбителям
Строителю, домашнему мастеру
Справочная информация
Типовые инструкции по охране труда (ТОИ)
Чудеса природы. Увлекательное путешествие вокруг земного шара
Шпионские штучки
Электрик в доме
Эффектные фокусы и их разгадки

Документация бесплатно:
Схемы и сервис-мануалы
Книги, журналы, сборники
Справочники
Параметры радиодеталей
Прошивки
Инструкции по эксплуатации

Бесплатный архив статей
(150000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
Ваши истории
Загадки для взрослых и детей
Знаете ли Вы, что...
Зрительные иллюзии
Веселые задачки
Каталог Вивасан
Палиндромы
Сборка кубика Рубика
Форумы
Карта сайта

ДИАГРАММА
© 2000-2019

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

Перевод:
Наталья Кузнецова

Контакты

При использовании материалов сайта обязательна ссылка на http://www.diagram.com.ua

сделано в Украине
сделано в Украине

Диаграмма. Бесплатная техническая библиотека

 

Бесплатная техническая библиотека Бесплатная техническая библиотека, Энциклопедия радиоэлектроники и электротехники

Новые возможности микросхемных стабилизаторов напряжения

Энциклопедия радиоэлектроники и электротехники / Начинающему радиолюбителю

Комментарии к статье Комментарии к статье

Микросхемные стабилизаторы все чаще можно встретить в радиолюбительских разработках. Но возможности их значительно шире по сравнению с используемыми радиолюбителями. В одних случаях стабилизатор может стать, к примеру, основой усилителя ЗЧ, акустической сирены или модулятора, в других - основой мощного стабилизатора, встраиваемого в сетевой адаптер. Об этом рассказывается в предлагаемых статьях.

НЕОБЫЧНОЕ ПРИМЕНЕНИЕ МИКРОСХЕМЫ КР142ЕН12

Интегральные стабилизаторы напряжения серий КР142, КР1157, КР1168 и аналогичные, описанные в статье С. Бирюкова "Микросхемные стабилизаторы напряжения широкого применения" ("Радио", 1999. № 2, с. 69 - 71), с успехом используются в конструкциях линейных стабилизаторов напряжения и блоков питания. Учитывая особенности ряда таких ИМС. можно расширить область их применения. Это, в частности, от носится к регулируемым стабилизаторам КР142ЕН12А, КР142ЕН12Б.

Усилитель постоянного или переменного тока. Как известно, для изменения выходного напряжения микросхемы КР142ЕН12А (КР142ЕН12Б) на ее управляющий вывод надо подавать регулируемое постоянное напряжение. Поскольку ток управляющего вывода составляет 50... 100 мкА, а выходной ток достигает полугора ампер, можно говорить о том, что коэффициент усиления микросхемы по току составляет несколько десятков тысяч и она способна выполнять функции усилителя тока. Схема такого усилителя приведена на рис. 1. По своим характеристикам он аналогичен известному эмиттерному повторителю.

Новые возможности микросхемных стабилизаторов напряжения

Если нужен усилитель постоянного тока, входное напряжение подают непосредственно на управляющий вывод микросхемы. При этом на ее выходе установится напряжение на 1.2 В больше. Максимальное входное напряжение должно быть на 3...3,5 В меньше напряжения питания.

Нагрузку R (лампа накаливания, электромагнит и т. д.) подключают непосредственно к выходу микросхемы. Максимальный ток нагрузки определяется максимальным током микросхемы. Конденсатор C3 устанавливают в случае самовозбуждения устройства.

Для реализации усилителя переменного тока придется ввести конденсаторы С2, C3. Подбором резистора R2 устанавливают на выходе постоянное напряжение, равное примерно половине напряжения питания. Номинал резистора R` выбирают таким, чтобы через него протекал ток, примерно в два раза больший максимального тока нагрузки R.

Конденсатор С4 должен быть такой емкости, чтобы он пропускал токи самой низкой частоты усиливаемого сигнала. Эксперименты показали, что усилитель обладает широкой полосой пропускания - до 200 кГц. Кроме того, микросхема устойчиво работала на активную нагрузку без конденсатора C3.

Модулятор. Ток через управляющий вывод микросхемы относительно стабилен, поэтому подключение к нему каскада на транзисторе позволит получить усилитель переменного напряжения с большим коэффициентом усиления. В итоге удастся построить сравнительно простой модулятор (рис. 2) для малогабаритной переносной AM радиостанции. Усиление его таково, что при использовании электретного микрофона ВМ1 средней чувствительности амплитуда переменного напряжения на выходе микросхемы составляет несколько вольт. А этого достаточно для модуляции выходного каскада передатчика.

Новые возможности микросхемных стабилизаторов напряжения

Подбором резистора R3 устанавливают на выходе микросхемы постоянное напряжение, равное половине питающего. Транзистор должен быть с коэффициентом передачи тока базы не менее 200.

Усилитель 3Ч. На основе описанной выше конструкции можно собрать УЗЧ (рис. 3). Здесь динамическую головку ВА1 подключают непосредственно к выходу микросхемы, и через нее постоянно протекает ток.

Новые возможности микросхемных стабилизаторов напряжения

Чувствительность усилителя достаточно большая - при подаче на вход сигнала напряжением 8 мВ выходное напряжение составляет 1 В. К выходу усилителя следует подключать динамическую головку со звуковой катушкой сопротивлением 10 - 16 Ом и более (или несколько низкоомных, соединенных последовательно).

Питающее напряжение может быть и больше - 9...12 В, но тогда нужно, чтобы динамическая головка была соответствующей мощности. Кроме того, допустимо подавать нестабилизированное напряжение, поскольку эффект стабилизации у микросхемы сохраняется. В случае необходимости устанавливают резистор R' и разделительный конденсатор С4, как показано на рис.1.

Мощная сирена. Ее схема показана на рис. 4. На двух транзисторах и микросхеме собран генератор прямоугольных импульсов звуковой частоты, а в качестве излучателя используется мощная динамическая головка ВА1. Ее выбирают исходя из получения максимальной мощности при имеющемся напряжении питания. При этом следует учитывать, что максимальный ток через микросхему не должен превышать 1,5 А для КР142ЕН12А и 1 А для КР142ЕН12Б.

Новые возможности микросхемных стабилизаторов напряжения

Транзистор VT1 должен иметь коэффициент передачи тока не менее 30, а VT2 - не менее 100.

Налаживание сирены сводится к установке устойчивой генерации подстроечным резистором R4. Частоту генерации изменяют подбором конденсатора С2.

Импульсный регулятор. Благодаря способности микросхемы работать в импульсном режиме, на ней можно собрать импульсный регулятор скорости вращения двигателя постоянного тока или яркости лампы накаливания (рис. 5).

Новые возможности микросхемных стабилизаторов напряжения

На элементах DD1.1 и DD1.2 собран задающий генератор, работающий на частоте около 1 кГц. Переменным резистором R1 изменяют скважность генерируемых импульсов (при этом генерируемая частота изменяется незначительно), которые поступают на буферные элементы DD1.3. DD1.4, а с их выходов - на управляющий вывод микросхемы DA1. В итоге на выходе микросхемы формируются мощные импульсы напряжения, длительность которых можно изменять резистором R1. Чем больше длительность импульсов, тем быстрее будет вращение оси электродвигателя М1 или больше яркость лампы накаливания EL1.

Диод VD3 защищает микросхему DA1 от возможных выбросов напряжения при работе с электродвигателем. В случае использования регулятора только с лампой накаливания диод не нужен.

Питающее напряжение в этом устройстве должно быть на 2...2,5 В больше максимального напряжения на электродвигателе или лампе накаливания.

Регулятор использовался совместно с малогабаритным электродвигателем ДПМ 30-Н1-09 и блоком питания напряжением 10... 11 В. Скорость вращения вала двигателя удавалось изменять от нескольких оборотов в секунду до максимальной.

Во всех описанных устройствах допустимо использовать полярные конденсаторы серий К50, К52. К53, а неполярные - серий КЛС, К10-17, К73. Подстроечные или переменные резисторы - СПО, СПЗ, СП4. Если на микросхеме будет рассеиваться мощность более 0,5 Вт, ее необходимо размещать на теплоотводе.

МАЛОМОЩНЫЕ МИКРОСХЕМЫ СТАБИЛИЗАТОРОВ НАПРЯЖЕНИЯ В БЛОКАХ ПИТАНИЯ

При конструировании стабилизированных блоков питания различной аппаратуры, как правило, используют микросхемные стабилизаторы напряжения. Большая номенклатура таких микросхем [1] предоставляет конструкторам широкую возможность их выбора для создания стабилизатора с требуемыми параметрами. В некоторых случаях, однако, для построения относительно мощных стабилизаторов вполне применимы маломощные микросхемы. Примером в этом отношении может служить построение стабилизатора напряжения, встраиваемого в сетевой адаптер.

В большинстве случаев, как известно, такие адаптеры, особенно импортные, обеспечивают выходной ток до 0.5 А и не содержат стабилизатора напряжения [2]. Если для повышения "качества" выпрямленного напряжения необходим стабилизатор, можно использовать микросхемы ИМС, указанные в [1].

Сегодня наиболее доступны микросхемы серии КР142. Для получения выходного напряжения 9 В обычно выбирают КР142ЕН8А. КР142ЕН8Г. Однако они обеспечивают ток нагрузки до 1...1.5 А при еще большем токе короткого замыкания (КЗ). Из-за этого при возникновении аварийной ситуации могут выйти из строя трансформатор и выпрямительные диоды адаптера.

Чтобы избежать этого, нужен стабилизатор с током нагрузки до 0,5 А и током КЗ не более 0,6 А. Но найти микросхемы с такими параметрами и с выходным напряжением 9 В затруднительно.

Выход из положения есть. Нужно использовать маломощную микросхему и "умощнить" ее с помощью транзистора (рис. 1).

Новые возможности микросхемных стабилизаторов напряжения

В таком устройстве при токе нагрузки более 20 мА падения напряжения на резисторе R1 окажется достаточно для открывания транзистора VT1. Ток потечет "в обход" DA1, выходное напряжение будет определяться ее параметрами, а ток нагрузки может превысить допустимый выходной ток микросхемы во много раз. Правда, ток КЗ достигнет 1... 1,5 А, что чревато вышеуказанными последствиями.

Ограничить ток КЗ нетрудно введением еще одного транзистора (VT2 на рис. 2). Тогда при токе нагрузки до 20 мА по-прежнему будет работать только DA1, а транзисторы окажутся закрытыми. Когда ток превысит указанное значение, откроется транзистор VT1 и ток потечет через него. Как только ток достигнет значения 400...500 мА либо в цепи нагрузки возникнет КЗ, на резисторе R1 появится такое напряжение, которое откроет транзистор VT2. Теперь оба транзистора начнут работать в режиме стабилизатора тока.

Новые возможности микросхемных стабилизаторов напряжения

Резистором R1 задают ориентировочное значение тока стабилизации: lcт = 0.6/R1. При этом ток КЗ составит: lкз = lcе + lкзмс где lкзмс - ток К3 микросхемы.

В обоих устройствах транзисторы VT1 - любые из серий КТ814, КТ816. Транзистор VT2 должен быть с малым напряжением насыщения коллектор-эмиттер, поэтому желательно применить, кроме указанного на схеме, транзисторы КТ208А-КТ208М, КТ209А-КТ209М, КТ3107А-КТ3107И, КТ3108А-КТ3108В. Конденсатор С1 - конденсатор фильтра адаптера.

Литература
  1. Бирюков С. Микросхемные стабилизаторы напряжения широкого применения. - Радио. 1999. № 2, с. 69-71.
  2. Бирюков С. Сетевые адаптеры. - Радио. 1998. № 6. с. 66. 67.
Автор: И.Нечаев

Смотрите другие статьи раздела Начинающему радиолюбителю.

Читайте и пишите полезные комментарии к этой статье.

Рекомендуем скачать в нашей Бесплатной технической библиотеке:

журналы Electronique et Loisirs (годовые архивы)

журналы Химия и жизнь (годовые архивы)

книга Первые уроки программирования. Звенигородский Г.А., 1985

книга Конструкции советских и чехословацких радиолюбителей. Сборник статей. Книга 2. Ломакин Л.Н. (ред), 1981

статья Заместитель генерального директора. Должностная инструкция

статья Превращение платка в яйцо (два способа)

справочник Зарубежные микросхемы и транзисторы. Серия O

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:

[lol][;)][roll][oops][cry][up][down][!][?]