Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Выпрямитель-стабилизатор для мотоцикла YAMAHA XV 400. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Автомобиль. Аккумуляторы, зарядные устройства

Комментарии к статье Комментарии к статье

В мотоцикле YAMAHA XV 400 вышел из строя выпрямитель-стабилизатор бортового напряжения. Так как блок с выпрямителем и устройством регулирования, установленный на теплоотвод, залит компаундом, его ремонт оказался невозможным. Приобрести новый блок или аналогичный не удалось. Автомобильный регулятор напряжения бортовой сети не подходит.

Поэтому было принято решение разработать и изготовить самодельный выпрямитель-стабилизатор. Он должен обеспечивать преобразование(выпрямление) трехфазного переменного напряжения генератора в постоянное напряжение бортовой сети и поддержание его в пределах 13,8... 14,2 В при потребляемом токе до 15 А. В блоке предполагалось использовать имеющиеся в наличии или доступные в приобретении детали.

Выпрямитель-стабилизатор для мотоцикла YAMAHA XV 400
Рис. 1

Результатом работы стала простая и удачная, на наш взгляд, конструкция. Принципиальная схема блока показана на рис. 1. Выпрямление трехфазного переменного напряжения, вырабатываемого генератором, выполняют диоды VD1-VD6. Поддержание напряжения бортовой сети в пределах 13,8...14,2 В происходит путем замыкания каждой фазы генератора при ее избыточном напряжении на общий провод тринисторами VS1-VS3.

Для управления тринисторами служит устройство управления А1. За уровнем напряжения следит детектор превышения напряжения DA1. Бортовое напряжение мотоцикла приложено к входу детектора через делитель напряжения R12-R14, понижающий напряжение 14,2 В примерно до 4,7 В (напряжение переключения детектора). Под-строечный резистор R13 предназначен для точной установки напряжения стабилизации. Конденсатор С1 сглаживает пульсации напряжения на входе детектора.

Транзисторы VT1, VT2 обеспечивают усиление выходного сигнала детектора до уровня обеспечивающего устойчивое управление тринисторами. Светодиод HL1 служит для визуального контроля работы блока. Питание на стабилизатор поступает при включении зажигания мотоцикла Пока напряжение бортовой сети не превышает 14,2 В, напряжение на входе детектора (на выводе 1) меньше порога его переключения, и на выходе детектора напряжение находится в пределах 0,4...0,6 В. При этом транзисторы VT1, VT2 остаются закрытыми, напряжение на управляющие выводы тринисторов VS1-VS3 не поступает, они тоже закрыты.

Как только бортовое напряжение превысит 14,2 В, на выходе детектора напряжение скачкообразно увеличится до 4,5...5,2 В. Это приведет к открыванию транзисторов VT2, VT1. На управляющие выводы тринисторов поступит открывающее напряжение. Через открывшиеся тринисторы обмотки генератора переменного тока окажутся замкнутыми на общий провод. В результате напряжение, вырабатываемое генератором, уменьшится, а значит, уменьшится и напряжение бортовой сети. Наличие открывающего напряжения на управляющих выводах тринисторов отметит светодиод HL1.

При уменьшении бортового напряжения до 13,8 В напряжение на входе детектора DA1 станет меньше порога его переключения, и на выходе детектора оно скачкообразно уменьшится до первоначального уровня. Транзисторы VT1, VT2 закроются, и вслед за ними закроются и тринисторы VS1 - VS3. Напряжение, вырабатываемое генератором, снова начнет увеличиваться до нового переключения детектора DA1 Процесс открывания и закрывания тринисторов непрерывно повторяется, в результате чего напряжение бортовой сети находится в пределах 13,8... 14,2 В.

Выпрямительные диоды VD1- VD6 можно использовать любые, рассчитанные на прямой ток не менее 25 А и обратное напряжение не менее 100 В. Тринисторы VS1- VS3 должны иметь допустимый прямой ток не менее 10 А и прямое неоткрывающее напряжение не менее 100 В. Вместо КТ814Б можно использовать транзистор КТ816Б, а вместо КТ3102БМ - KT3117А.

Детектор превышения напряжения КР1171СП47 можно заменить другим из этой же серии с порогом срабатывания не более 13 В, но при этом придется заново рассчитать сопротивление резисторов R12, R14 так, чтобы при контролируемом напряжении 14,2 В и положении движка резистора R13, близком к сред нему, происходило переключение детектора. Подстроечный резистор R13 - СП4-1.

Элементы узла управления А1 размещают на печатной плате из фольгированного с одной стороны стеклотекстолита толщиной 1 мм. Чертеж платы показан на рис. 2. Для защиты собранного устройства от атмосферных воздействий его после налаживания покрывают с обеих сторон двумя-тремя слоями лака УР-231 или ФЛ-582. При этом необходимо защитить головку винта, перемещающего движок резистора R13, от попадания на него защитного лака.

Выпрямитель-стабилизатор для мотоцикла YAMAHA XV 400
Рис. 2

Диоды VD1-VD6 и тринисторы VS1 - VS3 следует установить на теплоотводе с полезной площадью не менее 500 см2, изолировав их слюдяными прокладками. Резисторы R1-R6 припаивают непосредственно к выводам тринисторов. Электромонтаж цепей выпрямительных диодов и тринисторов (кроме управляющих цепей тринисторов) необходимо выполнить проводом сечением не менее 2,5 см2.

Блок устанавливают на мотоцикл в таком месте, где обеспечено обдувание его теплоотвода встречным потоком воздуха.

При налаживании необходимо сначала установить движок подстроечного резистора R13 в верхнее по схеме положение. Выводы 2 и 3 узла А1 подключают к источнику постоянного тока, позволяющему плавно регулировать выходное напряжение от 12 до 15 В. Включают источник и устанавливают на его выходе напряжение 14,2 В. Плавно перемещают движок резистора R13 до включения светодиода HL1.

Если теперь уменьшить выходное напряжение источника питания до 12 В, светодиод HL1 выключится. Плавно увеличивая выходное напряжение источника питания, убеждаются в том, что при достижении уровня 14,2 В включается светодиод и светит при дальнейшем увеличении напряжения. При плавном уменьшении выходного напряжения источника питания светодиод HL1 должен выключиться при напряжении 13,8 В и остаться выключенным при дальнейшем уменьшении напряжения.

После установки блока на мотоцикл выполняют окончательную регулировку. Запускают двигатель и по свечению светодиода на плате управления убеждаются в исправности блока и правильности его подключения. Комбинированным прибором или цифровым мультиметром проверяют напряжение на аккумуляторной батарее мотоцикла. При необходимости резистором R13 устанавливают напряжение на аккумуляторной батарее равным 14,1...14,2 В. После этого необходимо винт резистора R13 покрыть автогерметиком.

Изготовленный по предлагаемой схеме и установленный на мотоцикле YAMAHA XV 400 выпрямитель-стабилизатор безотказно проработал в течение времени пробега более 4000 км. При этом недозарядки аккумуляторной батареи или выкипания электролита отмечено не было.

Автор: В. Перолайнен, Ю. Прусаков, г. Балашов Саратовской обл.; Публикация: radioradar.net

Смотрите другие статьи раздела Автомобиль. Аккумуляторы, зарядные устройства.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Мягкая робототехника для сельского хозяйства 02.10.2021

"Мягкие" роботы сделаны из податливых материалов, таких как силикон и других полимеров, а не из металла. Эти материалы придают роботам органические характеристики, копируя работу мышц и позволяя им двигаться и выполнять работу вместо человека, которая не под силу старым металлическим машинам.

Особое применение мягкой робототехники, которое меня интересовало - это сельское хозяйство. Большинство автоматических решений для уборки урожая работают только с крупными и твердыми сельскохозяйственными культурами. Существует несколько механизмов для сбора более мелких культур, но многие из них жесткие и могут повредить растение в процессе. Некоторых успехов добились компании такие, как Soft Robotics Inc, которые создали захваты с мягкими элементами. Но они по-прежнему могли работать только с более твердыми культурами. Данные затруднения привели к исследовательскому проекту, в котором я участвовал. Целью проекта было изучить возможность автономного сбора легких хрупких ягод, в частности малины. Для этой задачи требовался уникальный захват. Учитывая хрупкость малины, эту проблему можно было решить с помощью мягкой робототехники.

Возникшая идея заключалась в создании трубчатой конструкции, которая двигалась бы к ягодному кусту и отделяла каждую ягоду малины от соседних.

Конечный эффектор скользит вверх по стеблю ягоды, после чего к работе приступают мягкие роботизированные мешки, которые не захватывают плод напрямую. Вместо этого они слегка надавливают на спинку ягоды, которая соединяется с цветоносом растения. Затем вся трубочка отодвигается, смещая ягоду со стебля. Это похоже на то, как человек тянет ягоду пальцами.

Инновации, связанные с созданием роботов, напоминающие человеческое тело, совпадают с разработками мозга роботов. Достижения в области искусственного интеллекта позволяют машинам определять в речи такие чувства, как счастье и печаль. Исследования также направлены на разработку технологий компьютерного зрения, которые могут определять эмоции, анализируя выражения лица.

Другие интересные новости:

▪ Микросхема драйвера светодиодов Marvell 88EM8189

▪ Нахождение токсинов с помощью мидий

▪ Выращены миниатюрные нейросети мозга

▪ Лекарства из водопровода

▪ Превращение обычного материала в магнит

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Моделирование. Подборка статей

▪ статья Все гнило в Датском королевстве. Крылатое выражение

▪ статья Как долго длится самый длинный год? Подробный ответ

▪ статья Хранение, эксплуатация и транспортировка баллонов со сжиженными, растворенными газами. Типовая инструкция по охране труда

▪ статья Регулятор яркости свечения настольной лампы. Энциклопедия радиоэлектроники и электротехники

▪ статья Акустическое реле вместо выключателя. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024