Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Блок управления мощностью на солнечных элементах. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Альтернативные источники энергии

Комментарии к статье Комментарии к статье

Существует мнение, что солнечные батареи смогут когда-нибудь существенно дополнить и даже вытеснить традиционные источники энергии. Тогда настанет время реальной проверки возможностей солнечных элементов.

В данной главе мы немного заглянем в будущее и проверим способность фотоэлектричества приносить реальную пользу. Больше никаких сувениров, никаких игрушек, только скромная, обыденная работа.

В этой главе читатель ожидает узнать, как солнечная энергия будет помогать нам в ежедневной домашней работе, включающей в себя приведение в действие мощной пилы, комнатного освещения, подачу электроэнергии на различные устройства развлечения и многое другое. Таково будущее солнечной энергетики.

Однако подробности подобных систем в этой книге описаны не будут. Вместо этого будет показано, как можно осуществить управление уже готовой фотоэлектрической системой. Этой цели служит блок управления мощностью.

Блок управления мощностью

Данный блок предназначен для полного контроля ресурса солнечных батарей. С пульта этого блока можно легко осуществлять управление электроснабжением до четырех потребителей энергии. Кроме того, для защиты каждого потребителя имеется плавкий предохранитель.

Но это еще не все. Поскольку работоспособность системы безусловно зависит от степени заряженности свинцово-кислотных батарей, в данное устройство непосредственно встроен блок контроля состояния батареи. Взглянув на пульт управления, можно сразу оценить рабочее состояние источника энергии. И если оно неудовлетворительно, запас энергии достигает опасного уровня, подается предупреждающий сигнал (зуммер).

Чего еще можно желать от контрольно-управляющего устройства?

Контрольно-управляющее устройство распределения мощности

Основная задача блока управления мощностью заключается в распределении фотоэлектрической энергии между различными частями системы. Он также предназначен для сохранения энергии про запас.

Рассмотрим, например, работу преобразователя напряжения, который преобразует постоянное напряжение 12 В, генерируемое солнечными батареями, в переменное напряжение 110 В. Такое напряжение необходимо для работы определенных устройств, например электропилы.

Но преобразователь напряжения потребляет энергию постоянно, даже когда к нему не подключено никакой нагрузки. При этом бесполезно расходуется энергия, которую можно было бы потратить с большей пользой. Следовательно, в блоке управления мощностью необходимо предусмотреть тумблер для отключения инвертора.

В этом блоке предусмотрена возможность отключения любой нагрузки, которая снабжена своим тумблером. Чтобы отключить любую нагрузку от источника энергии, достаточно просто "щелкнуть" выключателем.

Рассматривая рис. 1, можно обнаружить, что блок имеет четыре отдельные схемы, каждая из которых снабжена тумблером, установленным на лицевой панели. Над каждым тумблером имеется небольшой СД. Когда схема запитана, светится соответствующий СД, информируя о том, что энергия подводится к выбранной нагрузке.

Блок управления мощностью на солнечных элементах
Рис.1

Однако контроля за подводом энергии к нагрузке недостаточно. В целях безопасности необходимо следить за силой тока в цепи.

Именно поэтому в качестве выключателей используются не обычные тумблеры, а специальные прерыватели. В отличие от обычных прерывателей, которые быстро изнашиваются при использовании их в качестве выключателей, эти прерыватели предназначены для работы в качестве как ограничителя, так и в качестве выключателя.

Устройство контроля напряжения и степени заряженности аккумуляторных батарей

Блок управления содержит устройство контроля напряжения, который указывает на состояние (степень заряженности) батарей.

Как было показано в гл. 6, напряжение свинцово-кислотной батареи аккумуляторов зависит от заряда, хранящегося в ее элементах. Наглядно это видно из рис. 2, на котором показана зависимость между напряжением и степенью заряженности батареи. Из зависимости следует, что полностью заряженная батарея имеет напряжение 13,2 В, а полностью разряженная - 10,5 В. Для определения степени заряженности аккумуляторных элементов необходимо измерить напряжение на батарее и сравнить его со значением на рис. 2.

Блок управления мощностью на солнечных элементах
Рис.2

Это и делает устройство контроля заряженности батарей. Однако в нем вместо измерительного прибора для индикации напряжения используется световая полоска. Напряжение контролируемой батареи высвечивается 10 светодиодами. Шкала считывания построена так, что каждый последующий диод зажигается при увеличении напряжения на 0,5 В. Если горит первый диод, напряжение составляет 10,5 В, если второй - 11 В, если третий - 11,5 В и т. д. вплоть до 15 В.

Блок индикации выполнен на отдельной интегральной микросхеме LM3914. Внутри ее имеется ряд компараторов, сравнивающих входное напряжение с опорным напряжением источника и включающих лампочку, соответствующую соотношению упомянутых напряжений.

Принцип работы схемы индикации ясен из рис. 3. Резисторы R1, R2, R3 образуют делитель напряжения, который позволяет снизить входное напряжение 12 В (от батареи) до 2,5 В, необходимых для работы микросхемы IC1. Масштаб преобразования напряжения микросхемой IC1 устанавливается переменным резистором VR1. Теперь входное напряжение от батареи поступает на компараторы внутри IC1, которые выносят решение относительно его истинного значения. Это значение затем индицируется одним из 10 светодиодов.

Блок управления мощностью на солнечных элементах
Рис.3

Состояние батареи отображается двояко с помощью цветокодирования светодиодов. Например, 13-вольтовый диод имеет зеленый цвет. Считается, что батарея с напряжением 12-14 В работоспособна, следовательно, диод имеет зеленый цвет.

Однако если напряжение батареи снижается до 11,5 В, а затем до 11 В, то заряд истощается. Эти диоды имеют желтый цвет, индицирующий наличие проблемы, с которой можно столкнуться в дальнейшем.

Последний 10,5-вольтовый диод имеет красный цвет. Если напряжение аккумуляторной батареи упало до этого уровня, то в ней мало (или вообще не имеется) запасенной энергии. Простого взгляда достаточно, чтобы узнать не только точное значение напряжения батареи, но и ее зарядовое состояние (по изменению цвета). В табл. 1 приводится список светодиодов с указанием их цвета и отображаемой ими информации.

Таблица 1. Информация, отображаемая светодиодами

Блок управления мощностью на солнечных элементах

Устройство контроля заряда аккумуляторной батареи

Устройство контроля напряжения батареи позволяет также проверить состояние цепи заряда. В нормальных условиях зарядное напряжение не должно превышать 15,5 В, иначе батарея может выйти из строя.

Поэтому для устройства 15-вольтового индикатора зарезервирован красный свет. Когда он загорается, это не обязательно означает, что что-то произошло, просто по какой-то причине зарядное напряжение чрезмерно велико.

Тревожная сигнализация

И это не все! Знаете ли вы о том, что, допуская заряд батареи ниже 10,5 В, можно повредить ее. Произойдет сульфатация пластин, и крайне важно, чтобы этого не случилось.

В схему введена сигнализация. Если по какой-либо причине напряжение в системе упадет ниже 10,5 В, зазвучит сигнал тревоги. Я подключил к сигнализации также 15-вольтовый вывод индикатора, чтобы сигнал подавался и в случае перезаряда батареи.

Управление сигналом осуществляется двумя логическими элементами микросхемы IC2. Питание на микросхему подается с диода D1

Конструкция

Устройство контроля напряжения батареи выполнено с применением печатного монтажа. Рисунок печатной платы представлен на рис. 4. Не забудьте о том, что в списке деталей приведен адрес поставщика готовой печатной платы для этого устройства.

Блок управления мощностью на солнечных элементах
Рис.4

Элементы схемы размещаются согласно рис. 5. Припаивая радиодетали, обратите внимание на следующие моменты.

Блок управления мощностью на солнечных элементах
Рис.5

Во-первых, на присоединение светодиодов. Необходимо соблюдать полярность, не всегда легко определить, какой вывод диода является анодом, а какой - катодом. Если подключить светодиоды в обратной полярности, они не будут светиться. Необходимо также перед пайкой обратить внимание на соответствие цвета свечения светодиодов и не укорачивать их выводов.

Во-вторых, на соблюдение полярности включения микросхемы IC1, поскольку ошибочное включение приведет к выходу ее из строя. Микросхема - это чип КМОП-структуры, который весьма чувствителен к электростатическому заряду, поэтому необходимо обратить внимание и на этот момент.

Автоматические прерыватели размещаются на лицевой панели алюминиевого корпуса. Для прерывателей, упомянутых в списке деталей, необходимы отверстия диаметром 10 мм.

Необходимо выбрать прерыватели для системы, которые постоянно пропускают необходимый ток, но срабатывают при перегрузке. Нельзя использовать прерыватели со слишком большим порогом срабатывания.

Светодиоды размещаются точно над прерывателями. Под их хромированный корпус-держатель высверливаются отверстия диаметром 6 мм. Монтажная схема всего блока управления мощностью приведена на рис. 6.

Блок управления мощностью на солнечных элементах
Рис.6

Последовательно с четырьмя светодиодами включены резисторы. Их просто припаивают между катодами светодиодов и отключаемыми выводами прерывателей.

Для присоединения внешних устройств на задней стенке корпуса размещается переходная колодка. К внешним устройствам относятся солнечная батарея и коммутируемые приборы. Необходимо убедиться в том, что в цепях электропитания используется провод достаточного диаметра. Проводники, идущие к устройству контроля напряжения батареи, могут быть меньшего диаметра.

Устройство контроля напряжения батареи размещается под прерывателем. Печатная плата крепится на пластмассовых стойках параллельно дну корпуса.

Выводы светодиодов сгибаются так, чтобы светодиоды выступали за край платы, находясь в одной плоскости. Затем светодиоды выдвигают из щели, прорезанной под прерывателями.

Если имеется желание, сделаем надписи под выключателями, можно использовать для этой цели переводной шрифт.

Проверка и настройка

Проверить устройство достаточно просто, необходимо лишь присоединить ко входу 12-вольтовую батарею. Для проверки подключать больше ничего не надо.

Нажмите на прерыватель и проконтролируйте срабатывание по светодиоду. Светодиод должен светиться при включенном прерывателе и гаснуть при отключенном.

Устройство контроля напряжения батареи необходимо предварительно откалибровать. Подключив вольтметр ко входу батареи, необходимо измерить ее напряжение. Затем, вращая переменный резистор VR1, добиваются свечения светодиода, соответствующего измеренному напряжению. На этом калибровка заканчивается

Автор: Байерс Т.

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Преобразователи уровня Texas Instruments SN74AXC 27.10.2018

Компания Texas Instruments выпустила новые преобразователи уровня серии AXC. В качестве примера, один из представителей серии - SN74AXCH8T245 - 8 битный преобразователь уровня между низковольтными компонентами, работающими от напряжений 0,7 В - 0,9 В и компонентами работающими от стандартных шин питания 1,8 В - 3,3 В.

Преобразователь имеет два управляющих вывода установки направления передачи DIR1 и DIR2, которые управляют направлениями передачи групп выводов 1-4 и 5-8, что совместно с выводом разрешения работы выходного драйвера (ОЕ), позволяет гибко реализовывать синхронную или асинхронную передачу информации.

Особенности преобразователей семейства AXC:

широкий диапазон питающих напряжений Vcc: 0,65...3,3 В (для каждого канала);
совместимость с устройствами с частичным отключением блоков;
автоматическое отключение выходов при выключении питания;
подавление переходных процессов при включении питания;
контроль уровня напряжения питания;
на 50% снижены потери мощности (по сравнению с другими семействами);
невысокая стоимость.

Другие интересные новости:

▪ Как поймать радугу

▪ Открыт принципиально новый способ охлаждения

▪ Мониторы ViewSonic серии VX52

▪ Телевизионный брелок Realme Smart TV Stick FHD

▪ Зарядки электромобилей от McDonald's

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Крылатые слова, фразеологизмы. Подборка статей

▪ статья Наш ответ Чемберлену. Крылатое выражение

▪ статья Из чего делают деревянные духовые инструменты? Подробный ответ

▪ статья Лаконос многоплодниковый. Легенды, выращивание, способы применения

▪ статья Настройка и согласование антенно-фидерных устройств. Энциклопедия радиоэлектроники и электротехники

▪ статья Устройство защиты трехфазного электродвигателя от неполнофазного режима при обрыве цепи силового предохранителя. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024