www.diagram.com.ua
www.diagram.com.ua
Русский: Русская версия English: English version
Translate it!
Поиск по сайту

+ Поиск по журналам
+ Поиск по статьям сайта
+ Поиск по схемам СССР
+ Поиск по Библиотеке

Бесплатная техническая библиотека:
Все статьи А-Я
Энциклопедия радиоэлектроники и электротехники
Новости науки и техники
Журналы, книги, сборники
Архив статей и поиск
Схемы, сервис-мануалы
Электронные справочники
Инструкции по эксплуатации
Голосования
Ваши истории из жизни
На досуге
Случайные статьи
Отзывы о сайте

Справочник:
Большая энциклопедия для детей и взрослых
Биографии великих ученых
Важнейшие научные открытия
Детская научная лаборатория
Должностные инструкции
Домашняя мастерская
Жизнь замечательных физиков
Заводские технологии на дому
Загадки, ребусы, вопросы с подвохом
Инструменты и механизмы для сельского хозяйства
Искусство аудио
Искусство видео
История техники, технологии, предметов вокруг нас
И тут появился изобретатель (ТРИЗ)
Конспекты лекций, шпаргалки
Крылатые слова, фразеологизмы
Личный транспорт: наземный, водный, воздушный
Любителям путешествовать - советы туристу
Моделирование
Нормативная документация по охране труда
Опыты по физике
Опыты по химии
Основы безопасной жизнедеятельности (ОБЖД)
Основы первой медицинской помощи (ОПМП)
Охрана труда
Радиоэлектроника и электротехника
Строителю, домашнему мастеру
Типовые инструкции по охране труда (ТОИ)
Чудеса природы
Шпионские штучки
Электрик в доме
Эффектные фокусы и их разгадки

Техническая документация:
Схемы и сервис-мануалы
Книги, журналы, сборники
Справочники
Параметры радиодеталей
Прошивки
Инструкции по эксплуатации
Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(150000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
Ваши истории
Загадки для взрослых и детей
Знаете ли Вы, что...
Зрительные иллюзии
Веселые задачки
Каталог Вивасан
Палиндромы
Сборка кубика Рубика
Форумы
Карта сайта

ДИАГРАММА
© 2000-2019

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

Перевод:
Наталья Кузнецова

Контакты

При использовании материалов сайта обязательна ссылка на http://www.diagram.com.ua

сделано в Украине
сделано в Украине

Диаграмма. Бесплатная техническая библиотека

Бесплатная техническая библиотека Бесплатная техническая библиотека, Энциклопедия радиоэлектроники и электротехники

Системы современных ветродвигателей

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники/ Альтернативные источники энергии

Комментарии к статье Комментарии к статье

В настоящее время имеется много систем ветродвигателей, как с горизонтальной, так и с вертикальной осью вращения. Отличаются они друг от друга не только внешним видом и устройством, но и техническими возможностями в зависимости от того, для каких целей они применяются. По устройству приемника энергии ветра и по расположению его в воздушном потоке различают несколько систем ветродвигателей.

Мы уже говорили о ветродвигателях карусельного и барабанного типа. Известен еще так называемый роторный ветродвигатель (рис. 23). Его лопасти вращаются, как у карусельного ветродвигателя, в горизонтальной плоскости и приводят в движение вертикальный вал.

Системы современных ветродвигателей
Рис.23. Ветродвигатель роторного типа

Широко распространены в настоящее время крыльчатые ветродвигатели, самым древним типом которых и являются обычные ветряные мельницы. Основной частью любого крыльчатого ветродвигателя является ветровое колесо. Оно состоит из нескольких лопастей и вращается под действием ветра. При помощи пары конических шестерен, смонтированных на головке ветродвигателя (рис. 24), вращение колеса превращается в более быстрое движение вертикального вала или в возвратно-поступательное перемещение приводной штанги.

Системы современных ветродвигателей
Рис.24. Схема крыльчатого ветродвигателя

Для поворота головки и ветрового колеса на ветер у ветряных мельниц имеется водило, а у современных небольших ветродвигателей - хвост с вертикальным оперением на конце. У крупных крыльчатых ветродвигателей существуют и другие более сложные механизмы для автоматического установа ветрового колеса на ветер. Чтобы скорость вращения ветроколеса не превышала предельной, имеется специальное устройство для автоматического регулирования числа оборотов.

Обычно у поверхности земли воздушный поток вследствие различных препятствий бывает неравномерным, ослабленным, поэтому ветровое колесо устанавливают на высокой мачте или башне, выше препятствий.

По устройству ветровых колес современные крыльчатые ветродвигатели делятся на быстроходные и тихоходные.

У тихоходного ветродвигателя ветровое колесо состоит из большого числа лопастей (рис. 25). Оно легко трогается с места. Благодаря этому тихоходный ветродвигатель удобен для работы с поршневым насосом и другими машинами, требующими при пуске в работу большое начальное усилие.

Системы современных ветродвигателей
Рис.25. Современный многолопастный ветродвигатель TB-5 мощностью до 2,5 лошадиной силы

Тихоходные ветродвигатели в основном используются в районах, где скорость ветра в среднем не превышает 4,5 метра в одну секунду. Все механизмы многопластных ветродвигателей, как правило, несколько проще, чем у быстроходных. Однако ветровые колеса тихоходных ветродвигателей представляют собой довольно громоздкие конструкции. При больших размерах таких колес трудно создать необходимую устойчивость, особенно при высоких скоростях ветра. Поэтому в настоящее время многолопастные ветродвигатели строятся с диаметрами ветровых колес не более 8 метров. Мощность такого ветродвигателя достигает 6 лошадиных сил. Этой мощности вполне достаточно для того, чтобы подавать на поверхность воду из скважин глубиной до 200 метров.

Быстроходные ветродвигатели имеют в ветровом колесе не более четырех крыльев с обтекаемым профилем (см., например, рис. 27).

Системы современных ветродвигателей
Рис.27. Ветродвигатель 1-Д-18 мощностью до 30 киловатт

Это дает возможность им хорошо выдерживать очень сильные ветры. Даже при сильном и порывистом ветре хорошо устроенные механизмы регулирования создают равномерное вращение ветровых колес быстроходных ветродвигателей.

Эти положительные особенности быстроходных ветродвигателей позволяют им работать при переменном ветре любой силы.

Поэтому быстроходные ветродвигатели могут строиться с очень большими диаметрами ветровых колес, достигающими пятидесяти и более метров и развивающими мощность несколько сот лошадиных сил.

Благодаря высокой и устойчивой равномерности у ветровых колес быстроходные ветродвигатели используются для привода самых разнообразных машин и электрических генераторов. Современные быстроходные ветродвигатели являются универсальными машинами.

Сравнение ветродвигателей различных систем удобно производить, вводя понятие о нормальной быстроходности. Эта быстроходность определяется отношением окружной скорости на внешнем конце вращающейся лопасти при скорости ветра 8 метров в секунду к скорости воздушного потока.

Лопасти карусельных, роторных и барабанных ветродвигателей при работе перемещаются вдоль воздушного потока и скорость любой их точки никогда не может быть больше скорости ветра. Поэтому нормальная быстроходность ветродвигателей этих типов будет всегда меньше единицы (так как числитель будет меньше знаменателя).

Ветровые колеса крыльчатых ветродвигателей вращаются поперек направления ветра, а поэтому скорость движения концевых частей у их крыльев достигает больших величин. Она может быть в несколько раз больше скорости воздушного потока. Чем меньше лопастей и лучше их профиль, тем меньшее сопротивление испытывает ветровое колесо. Значит, тем быстрее оно вращается. Лучшие образцы современных крыльчатых ветродвигателей имеют нормальную быстроходность, достигающую девяти единиц. Большинство ветродвигателей заводского производства имеет быстроходность, равную 5-7 единицам. Для сравнения отметим, что даже лучшие крестьянские мельницы имели быстроходность, равную всего 2-3 единицам (и в этом смысле они являются более совершенными, чем карусельные, роторные и барабанные ветродвигатели).

С ростом числа лопастей у ветрового колеса увеличивается его способность трогаться с места при небольших скоростях ветра. Поэтому многолопастные крыльчатые ветродвигатели, у которых суммарная площадь лопастей составляет 60-70 процентов от ометаемой поверхности (см. рис. 20) ветрового колеса, вступают в работу при скоростях ветра 3-3,5 метра в секунду.

Системы современных ветродвигателей
Рис.20. Мельница козлового типа

Быстроходные же ветродвигатели с малым числом лопастей трогаются с места при скоростях ветра от 4,5 до 6 метров в секунду. Поэтому их приходится пускать в работу или без нагрузки или при помощи специальных устройств.

Хорошее трогание с места и простота конструкции карусельных, роторных и барабанных ветродвигателей подкупают многих изобретателей и конструкторов, которые считают их идеальными ветродвигателями. В действительности, однако, эти машины имеют ряд существенных недостатков. Эти недостатки затрудняют их использование даже с такими распространенными и простыми машинами, как поршневые насосы и жерновые мукомольные установки.

Ветродвигатели с приемниками энергии ветра роторного типа очень плохо используют энергию воздушного потока, коэффициент использования энергии ветра у них в 2-2,5 раза меньше, чем у крыльчатых ветродвигателей. Поэтому при равных ометаемых лопастями поверхностях крыльчатые ветродвигатели могут развить мощность в 2- 2,5 раза большую, чем карусельные, роторные и барабанные ветросиловые установки.

Ветродвигатели роторного типа в настоящее время используются лишь в виде небольших кустарных установок мощностью до 0,5 лошадиной силы. Например, они находят применение для привода в движение различных вентиляционных устройств в помещениях для скота, кузницах и других производственных помещениях в сельском хозяйстве.

От чего зависит мощность ветродвигателя?

Мы знаем, что энергия воздушного потока непостоянна, поэтому любой ветряной двигатель имеет переменную мощность. Мощность любого ветродвигателя зависит от скорости ветра. Установлено, что при увеличении скорости ветра в два раза мощность на крыльях ветродвигателя увеличивается в 8 раз, а при росте скорости воздушного потока в 3 раза мощность ветродвигателя увеличивается в 27 раз.

Мощность ветродвигателя зависит также и от величины приемника энергии ветра. В этом случае она пропорциональна той площади, которую ометают лопасти ветрового колеса или ротора. Например, у крыльчатых ветродвигателей ометаемая лопастями поверхность будет площадью круга, который описывает конец лопасти за один полный оборот. У барабанных, карусельных и роторных ветродвигателей ометаемая лопастями поверхность представляет площадь прямоугольника с высотой, равной длине лопасти, и с шириной, равной расстоянию между наружными кромками противоположных лопастей.

Однако любое ветровое колесо или ротор превращает в полезную механическую работу лишь часть энергии воздушного потока, проходящего через ометаемую лопастями поверхность. Эта часть энергии определяется коэффициентом использования энергии ветра. Величина коэффициента использования энергии ветра всегда меньше единицы. У лучших современных быстроходных ветродвигателей этот коэффициент достигает 0,42. У серийных заводских быстроходных и тихоходных ветродвигателей коэффициент использования энергии ветра обычно равен 0,30-0,35; это значит, что примерно лишь одна треть энергии воздушного потока, проходящего через ветровые колеса ветродвигателей, превращается в полезную работу. Остальные две трети энергии остаются не использованными.

Советский ученый Г. X. Сабинин на основании расчетов установил, что даже у идеального ветряка коэффициент использования энергии ветра равен только 0,687.

Почему же этот коэффициент не может быть равным или даже близким к единице?

Объясняется это тем, что часть энергии ветра затрачивается на образование вихрей у лопастей и скорость ветра за ветроколесом падает.

Таким образом, фактическая величина мощности ветродвигателя зависит от коэффициента использования энергии ветра. Мощность ветродвигателя пропорциональна его значению. Это значит, что с увеличением коэффициента использования энергии ветра увеличивается мощность ветродвигателя, и наоборот.

Барабанные, карусельные и роторные ветродвигатели с простейшими лопастями имеют очень низкие коэффициенты использования энергии ветра. Их значения колеблются в широких пределах от 0,06 до 0,18. У крыльчатых же двигателей этот коэффициент находится в пределах от 0,30 до 0,42.

Кроме этого, полезная мощность любого ветродвигателя пропорциональна еще коэффициенту полезного действия механизма передачи, а также плотности воздуха. Обычно коэффициент полезного действия механизмов современных ветродвигателей равен от 0,8 до 0,9.

Из сказанного о мощности ветродвигателя следует, что при данном ветре тот ветродвигатель будет иметь более высокую мощность, у которого через поверхность, ометаемую крыльями, протекает наибольшее количество воздушного потока, а лопасти ветроколеса имеют хорошо обтекаемый профиль.

Автор: Кармишин А.В.

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

Рекомендуем скачать в нашей Бесплатной технической библиотеке:

раздел сайта Инструкции по эксплуатации

журналы Электрик (годовые архивы)

книга Реле РНТ в схемах дифференциальных защит. Овчинников В.В., 1966

книга Синхронизация кадровой развертки. Рабинович М.Н., 1976

статья Гидравлический класс

статья Хотите верьте, хотите нет

справочник Механизмы импортной аудио и видеоаппаратуры

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:

[lol][;)][roll][oops][cry][up][down][!][?]



Комментарии к статье:

Гость
Ау, люди! Когда же вы наконец вырастете из детских штанищек?! Всё время толкуете о простых приемниках потока ветра... Точно как бы вешаете белье на просушку! А сами уже мечтаете на Марсе яблони посадить, а может еще и привозить марсианские яблони землякам? [roll] [lol]


Бесплатная техническая библиотека Бесплатная техническая документация для любителей и профессионалов