Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Дизель. История изобретения и производства

История техники, технологии, предметов вокруг нас

Справочник / История техники, технологии, предметов вокруг нас

Комментарии к статье Комментарии к статье

Дизельный двигатель (дизель) - поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распыленного топлива от воздействия разогретого при сжатии воздуха.

Спектр топлива для дизельных двигателей весьма широк, сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения - рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизельный двигатель может с определенным успехом работать и на сырой нефти.

Дизель
Дизельный двигатель

Как известно, одним из основных показателей, по которому оценивается работа любого, в том числе теплового, двигателя, является его КПД. Чем больше энергии, выделившейся при сгорании топлива, превращается в полезную работу, чем меньше ее теряется при различных преобразованиях, тем лучше. Во всех существующих тепловых двигателях эти потери очень велики, так что более двух третей выделившейся в них энергии растрачивается попусту. В чем здесь причина? Происходит ли это из-за неудачной конструкции, или же тепловой двигатель в принципе не может иметь высокий КПД по самой своей природе?

Впервые над этим вопросом задумался французский инженер Карно, выпустивший в 1824 году классический труд "Размышление о движущей силе огня". Карно поставил перед собой задачу выяснить, каким образом должны протекать процессы в идеальном тепловом двигателе, чтобы КПД его был максимально возможным. Путем расчетов он в конце концов вывел понятие о круговом процессе в работе всех тепловых двигателей (его называют "циклом Карно"), при котором между двумя температурами T1 и T2 рабочего тела двигателя (рабочее тело - это тот газ, который двигает поршень; им может быть пар в паровой машине или взрывчатая смесь в газовом двигателе) можно получить максимум полезной работы, а следовательно, и самый высокий КПД.

Дизель
Цикл Карно: 1-2 - изотермическое расширение; 2-3 - адиабатическое расширение; 3-4 - изотермическое сжатие; 4-1 -адиабатическое сжатие

Работа этого гипотетического высокоэффективного двигателя, как доказал Карно, должна складываться из четырех циклов. На первом цикле к рабочему телу подводится тепло Q1 от верхнего уровня T1 при постоянной температуре этого уровня (то есть на этом цикле рабочее тело должно расширяться, сохраняя постоянную температуру, что и достигается за счет нагревания тела). Во время второго цикла происходит расширение рабочего тела, но уже без подвода тепла, до тех пор, пока температура его не опустится до нижнего уровня T2. На третьем цикле рабочее тело сжимается при постоянной температуре T2 (для этого было необходимо постоянно отводить тепло Q2). На четвертом этапе рабочее тело сжималось без отвода тепла до тех пор, пока его температура не поднимется вновь до T1. В случае соблюдения всех этих условий, по расчетам Карно, КПД двигателя определялся формулой 100•(1 - T2/T1) и достигал порядка 70-80%.

На протяжении всего XIX века расчеты Карно будоражили творческую мысль изобретателей, которые старались найти ответ на вопрос: каким образом работу реальных тепловых двигателей приблизить к работе по "циклу Карно" и получить максимально возможный КПД. Но все попытки построить такой двигатель оказались безуспешны. Например, КПД паровой машины при мощности в 100 л.с. не превышал 13%, а в маломощных двигателях он был менее 10%. КПД бензиновых и газовых двигателей получался несколько выше, но тоже не превосходил 22-24%.

Таково было положение дел, когда в начале 90-х годов за создание "идеального двигателя" взялся молодой немецкий инженер Рудольф Дизель. Еще будучи студентом, он поставил перед собой цель разработать такой мотор, показатели которого были бы близки к "циклу Карно", причем этот двигатель должен был превосходить обычный бензиновый как по мощности, так и по экономичности.

После нескольких лет упорной работы проект двигателя был разработан. Суть идеи Дизеля сводилась к следующему. На первом этапе поршень сжимал воздух в цилиндре до высокого давления, за счет чего температура в цилиндре повышается до температуры воспламенения горючего (это соответствовало четвертому циклу Карно - сжатию без отвода тепла). Таким образом, в цилиндре достигалось давление порядка 90 атм и температура около 900 градусов. Горючее подавалось в цилиндр в конце цикла сжатия и вследствие высокой температуры воздуха воспламенялось от одного соприкосновения с ним без всякого внешнего зажигания.

Нагнетание горючего осуществлялось равномерно, так что часть обратного движения поршня и расширение газов происходили при постоянной температуре (в соответствии с первым "циклом Карно"). Далее поршень двигался уже под влиянием высокого давления без горения топлива (второй "цикл Карно"). Третьему циклу соответствовали выхлоп и всасывание свежей порции атмосферного воздуха. Затем все циклы повторялись. Благодаря такому устройству Дизель думал повысить КПД своего мотора до неслыханной величины - 73%. Поначалу в качестве горючего он рассчитывал применить пары аммиака, но потом остановил свой выбор на угольном порошке. В 1892 году Дизель получил патент на описанный принцип работы двигателя, а в 1893 году выпустил брошюру "Теория и конструкция рационального теплового двигателя" с описанием мотора и своими математическими выкладками.

Дизель
Чертеж двигателя Дизеля

Брошюра привлекла к себе большое внимание. Впрочем, большинство инженеров считало идею Дизеля несбыточной. Крупнейший специалист по газовым двигателям того времени Келер предупреждал, что получить такой высокий КПД невозможно, поскольку в двигателе Дизеля очень высоки потери мощности на сжатие воздуха до температуры воспламенения, и при работе по "циклу Карно" вся полезная работа будет расходоваться только на поддержание его собственного движения. Тем не менее Дизель стал настойчиво предлагать свою модель различным немецким фирмам. Поначалу он повсеместно встречал отказ. Не отчаиваясь, он продолжал переписку, спорил, доказывал и наконец добился успеха: фирма Круппа в Эссене согласилась финансировать расходы, а руководство Аугсбургского завода - изготовить пробный образец.

Уже в июле 1893 года был изготовлен первый одноцилиндровый двигатель Дизеля. В соответствии с первоначальным проектом, сжатие в его цилиндре должно было достигать 90 атм, а температура перед началом впуска горючего - 900 градусов. Поскольку температура не должна была сильно превышать этот предел, никакой системы охлаждения для мотора не предусматривалось. Компрессор также не планировался - угольный порошок предполагалось вдувать насосом.

Но еще на стадии сборки Дизель, проверив свои расчеты, убедился, что Келер прав - затраты мощности двигателя на сжатие воздуха до 90 атмосфер оказались чрезмерно велики и "съедали" весь выигрыш в КПД за счет работы по "циклу Карно". Пришлось прямо на ходу переделывать задуманное. Чтобы снизить потери мощности на сжатие, Дизель решил уменьшить давление в цилиндре более чем вдвое - до 35-40 атм. В связи с этим температура сжатого воздуха вместо 900 градусов должна была составлять всего 600. Это было очень мало - разность температур в формуле Карно оказывалась слишком незначительной для получения высокого КПД.

Чтобы поправить дело и повысить мощность мотора, Дизелю пришлось отказаться и от второго важного момента своей конструкции - расширения рабочего тела при постоянной температуре. Он рассчитал, что температура при сгорании топлива должна возрастать до 1500 градусов. А это, в свою очередь, требовало, во-первых, самого интенсивного охлаждения мотора, а во-вторых, более калорийного горючего. Угольная пыль не могла дать такой высокой температуры, поэтому Дизель был принужден обратиться к жидкому топливу. Но при первой же попытке впрыснуть в цилиндр бензин, произошел взрыв, едва не унесший жизни изобретателя и его помощников.

Так закончилось первое испытание. Оно имело двоякий результат. Дизелю пришлось шаг за шагом довольно сильно отступить от первоначальной схемы своего "идеального мотора". Но, с другой стороны, некоторые принципиальные моменты его расчетов подтвердились - сильное сжатие рабочей смеси вело к повышению КПД и, кроме того (взрыв доказал это), оказалось, что топливо действительно можно воспламенять путем сжатия, не прибегая к дорогостоящей системе зажигания. Поэтому фирмы, финансировавшие проект, остались в целом удовлетворены достигнутым успехом, и Дизель получил возможность продолжать свои эксперименты.

Дизель
Двигатель Дизеля

В июне 1894 году был построен второй двигатель, для которого Дизель придумал форсунку, управлявшую впрыском керосина. В этой модели давление в цилиндре доводилось до 35-40 атм, а температура в конце сжатия - до 500-600 градусов. Мотор не только удалось запустить, но и заставить работать на холостом ходу с частотой до 80 оборотов в минуту. Это был большой успех - идея Дизеля оказалась жизнеспособной. В 1895 году был построен третий двигатель, который мог уже работать с небольшой нагрузкой. Для впрыскивания керосина здесь впервые был предусмотрен компрессор. Кроме того, пришлось разработать систему интенсивного охлаждения, чтобы предотвратить заклинивание цилиндра. Только после этого в 1896 году запуск нового опытного образца принес успех.

При испытании с нагрузкой КПД мотора оказался 36%, а расход керосина составил около 200 г на лошадиную силу в час. Хотя эти показатели и были очень далеки от параметров "идеального мотора", они все же впечатляли: КПД нового двигателя оказался на 10-12% выше, чем у бензиновых двигателей того времени, а по своей экономичности он превосходил их почти в два раза. Пусть Дизелю не удалось исполнить свою мечту, все же сделанное им имело огромное значение - благодаря его настойчивости была разработана принципиально новая конструкция двигателя внутреннего сгорания, которая была и остается лучшей на протяжении ста последних лет.

Работал новый мотор следующим образом. При первом ходе поршня за счет живой силы маховика, запасенного за предыдущую работу машины, воздух всасывался внутрь цилиндра. Во время второго хода, совершаемого также за счет живой силы маховика, запертый в цилиндре воздух сжимался до 35 атм. При этом теплота, выделявшаяся при сжатии, доводила его до температуры воспламенения горючего. В начале третьего хода при помощи насоса вводился керосин. Это впрыскивание продолжалось лишь незначительную часть хода. В течение остальной части хода газовая масса расширялась, и поршню сообщалась рабочая сила, которая и передавалась через шатун коленчатому валу двигателя. При четвертом ходе продукты сгорания извергались через выхлопную трубу в атмосферу.

Двигатель был снабжен компрессором, который в особом резервуаре сгущал воздух при давлении, несколько превышавшем самое высокое давление в цилиндре. Из этого резервуара воздух через трубку очень незначительного диаметра направлялся в маленькую камеру форсунки, то есть аппарата для распыления подаваемого горючего, куда одновременно подавался керосин. Эта камера сообщалась с внутренностью цилиндра при помощи маленького отверстия, запираемого иглой: когда эта игла приподнималась, керосин вгонялся в цилиндр благодаря избытку давления в камере.

Горение в цилиндре регулировалось, смотря по силе, которую должен был развить двигатель, либо изменением продолжительности впуска горючего, либо изменением давления в компрессоре. Этот же сжатый воздух употреблялся и для начального пуска двигателя из холодного состояния. Наверху двигателя помещался распределительный вал с пятью кулачками один управлял клапаном, впускавшим воздух, другой - клапаном, впускавшим керосин, третий - клапаном, выпускавшим продукты сгорания. Два последних кулачка управляли клапанами, при помощи которых впускался сжатый воздух в цилиндр при первоначальном пуске двигателя.

Дизель
Схема двухтактного двигателя внутреннего сгорания с внутренним смесеобразованием: 1 - выхлопное окно; 2 - продувочное окно; 3 - всасывающий клапан

Дизель
Схема четырехтактного двигателя внутреннего сгорания с внутренним смесеобразованием (дизель) 1 - поршневой палец; 2 - шатун; 3 - коленчатый вал; 4 - поршень; 5 - топливный насос; 6 - впускной клапан; 7 - воздухоочиститель; 8 - всасывающий коллектор; 9 - топливопровод высокого давления; 10 - форсунка; 11 - головка двигателя; 12 - выхлопной коллектор; 13 - выхлопной клапан; 14 - распределительный вал; 15 - топливопровод низкого давления, подводящий топливо к насосу (на схеме, для наглядности, клапаны расположены в блоке цилиндров и приводятся в действие двумя распределительными валами; в действительности дизели имеют клапаны, расположенные в головке и приводимые в действие почти, как правило, от одного распределительного вала)

Первые же официальные испытания нового двигателя произвели настоящую сенсацию среди инженеров. С этого времени началось победное шествие "дизелей" по всему миру. Многие фирмы, которые прежде не откликнулись на предложение Дизеля, спешили купить у него право строить изобретенные им моторы, и это право обходилось им теперь недешево (например, Эммануил Нобель, желая наладить производство дизелей в России, заплатил Дизелю около 500 тысяч долларов).

Уже в 1898 году Дизель, совершенно неожиданно для себя, сделался миллионером. Впрочем, первые двигатели, пущенные в серийное производство, оказались неудовлетворительными, капризными и часто выходили из строя. Выпуск такой сложной и высокотехнологичной машины оказался не под силу многим заводам с устаревшим оборудованием. Как в свое время Уатту, Дизелю пришлось потратить много сил на то, чтобы довести до совершенства производственный процесс изготовления дизелей - разработать новые станки, найти подходящие сплавы, подготовить специалистов. В течение нескольких лет он кочевал по Европе и Америке, посещая заводы, на которых шло производство его моторов.

К началу XX века основные трудности были преодолены, и дизели стали постепенно завоевывать все новые и новые сферы применения в промышленности и транспорте. В 1900 году на Всемирной выставке в Париже двигатели Дизеля получили гран при. Особенно подняло престиж новых моторов известие о том, что завод Нобеля в России наладил выпуск очень неплохих двигателей, работавших на сырой нефти.

Автор: Рыжов К.В.

 Рекомендуем интересные статьи раздела История техники, технологии, предметов вокруг нас:

▪ Умный дом

▪ Пароход

▪ Пластиковый пакет

Смотрите другие статьи раздела История техники, технологии, предметов вокруг нас.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Холодильник Samsung Bespoke 4-Door Flex с планом питания и цифровой кулинарией 27.12.2023

Корпорация Samsung представляет свой новый умный холодильник Bespoke 4-Door Flex. Это устройство с четырьмя дверями, одна из которых оборудована 32-дюймовым вертикальным экраном. Этот инновационный холодильник позволяет не только заказывать продукты, но и просматривать телепередачи и YouTube-ролики, а также управлять умным домом.

Samsung Bespoke 4-Door Flex представляет интегрированный подход к хранению продуктов, предлагая не только умные функции, но и инновационные возможности в области составления питательных планов и цифровой кулинарии. Это открывает новую эру в использовании технологий для улучшения повседневной жизни и заботы о здоровье.

Основной изюминкой нового холодильника является встроенный искусственный интеллект, способный разработать план питания для одного человека или для всей семьи, учитывая индивидуальные потребности каждого члена. Нейросети учитывают различные факторы, начиная от поставленных целей (похудение или набор массы), и заканчивая наличием аллергий или специальных диет.

AI-помощник холодильника способен генерировать рецепты для разнообразных блюд, используя продукты, имеющиеся в доме. Искусственный повар понимает ваши предпочтения: обычные, безглютеновые, пескетарианские, безмолочные, веганские и многое другое.

Холодильник обладает функцией "зрения", что позволяет устройству определять, какие продукты хранятся в камере, и предупреждать о истечении срока годности. Дату производства нужно вводить вручную. Есть некоторые ограничения: в настоящее время устройство определяет до 33 категорий продуктов.

Другие интересные новости:

▪ MATSUSHITA начинает раскрутку DVD-RAM

▪ Рисовый гель

▪ Создан паучий шелк с помощью фотосинтезирующих бактерий

▪ Создан первый полностью искусственный живой организм

▪ Intel продала 1.000.000.000 процессоров за 25 лет

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Компьютерные устройства. Подборка статей

▪ статья Три модели планетоходов. Советы моделисту

▪ статья Как долго способен прожить человек? Подробный ответ

▪ статья Душица обыкновенная. Легенды, выращивание, способы применения

▪ статья Усилители мощности. Часть вторая. Энциклопедия радиоэлектроники и электротехники

▪ статья Организация и эксплуатация электроустановок. Правила безопасности и соблюдение природоохранных требований. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024